

# Forord

Denne rapporten er utarbeidet etter forespørsmål fra Fagrådet for vann- og avløpsteknisk samarbeid i indre Oslofjord ved Knut Bjørnskau, og er Fagrådets rapport nummer 106. Arbeidet er gjennomført av Universitetet i Oslo. Finansieringen av arbeidet er delt mellom Fagrådet, Fylkesmannen i Akershus samt Klima- og forurensningsdirektoratet (Klif, tildligere SFT).

På feltarbeidet i 2009 ble Universitetets forskningsfartøy "FF Trygve Braarud" benyttet. Vi takker skipper Sindre Holm og hans mannskap for godt samarbeid.

Elisabeth Alve har vært prosjektleder og hatt det overordnede ansvaret for prosjektet. Jane K. Dolven har hatt hovedansvaret for analysene av vanninnhold, total organisk karbon (TOC) og foraminiferer samt rapportering. Metall- og TOC-analysene ble utført ved UiO av Mufak Naoroz. Vi takker ham for dette samt geologistudentene Jonas Hovd Enoksen og Aina Marie Nordskog for prepareringshjelp i forbindelse med metall- og TOC-analysene. Takk også til Thorbjørn Joest Andersen ved Universitetet i København som utførte aldersdateringene, og NIVA-forskerene John Artur Berge, Jan Magnusson og Hans Nilsson for hjelp med utvelgelse av stasjonene. Til slutt vil vi gjerne takke Hans Skjerpen for hjelp med videoredigering av filmen "Feltarbeid i Oslofjorden, 2009".

Oslo, 18.06.2010

ane K. Dolver

Jane K. Dolven

Bisdath Alon

Elisabeth Alve



Referanse: Dolven, J.K. og Alve, E., 2010. *Naturtilstanden i indre Oslofjord*. Institutt for geofag, Universitetet i Oslo, 86 s.

ISBN 978-82-91885-39-1

# Innhold

| Sammendrag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| <ul> <li><b>1. Innledning</b></li> <li>1.1. Bakgrunn for undersøkelsene</li> <li>1.2. Miljøstratigrafiske analyser og bentiske foraminiferer</li> <li>1.3. Formål med undersøkelsen</li> <li>1.4. Områdebeskrivelse</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      | <b>6</b><br>6<br>6<br>7                                               |
| 2. Materiale og metoder<br>2.1. Feltarbeid<br>2.2. Analyser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>9</b><br>9<br>9                                                    |
| <ul> <li>3. Resultater for alle kjernene</li> <li>3.1. Ep1 (Bunnefjorden, 152 m vanndyp)</li> <li>3.2. Cp3-1 (Bunnefjorden, 101 m vanndyp)</li> <li>3.3. Bunn18x (Bunnefjorden, 85 m vanndyp)</li> <li>3.4. EA1 (Bunnefjorden, 58 m vanndyp)</li> <li>3.5. Fl1-1 (Vestfjorden, 160 m vanndyp)</li> <li>3.6. Dk2-1 (Vestfjorden, 99 m vanndyp)</li> <li>3.7. Dm2-1 (Vestfjorden, 85 m vanndyp)</li> <li>3.8. Cj3-1 (Vestfjorden, 58 m vanndyp)</li> <li>3.9. Bo2-1 (Lysakerfjorden, mellom Vestfjorden og Bunnefjorden)</li> <li>3.10. Im4x (i Drøbaksundet like utenfor Drøbaksterskelen, 157 m vanndyp)</li> </ul> | <b>11</b><br>11<br>13<br>15<br>17<br>19<br>20<br>21<br>22<br>24<br>25 |
| <ul> <li>4. Diskusjon og oppsummering</li> <li>4.1. Endringer i næringstilførsel og eutrofieringssignaler</li> <li>4.2. Faunautviklingen i indre Oslofjord fra "naturtilstand" til i dag</li> <li>4.3. Avsluttende kommentarer</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           | <b>27</b><br>27<br>28<br>30                                           |
| 5. Referanser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                                                                    |
| <b>Vedlegg</b><br>1.1-1.10. Vanninnholdsdata, TOC og metall (Zn, Cd, Cu)<br>2.1-2.7. Dateringer<br>3. Foraminiferanalysedata (diversitets-indekser, ind/g sediment)<br>4. Foraminiferrådata (tellinger)                                                                                                                                                                                                                                                                                                                                                                                                             | <b>33</b><br>33<br>43<br>82<br>83                                     |

# Sammendrag

I følge EUs vanndirektiv, skal vannkvaliteten i kystfarvann vurderes ut fra biologiske kriterier ved sammenlikning med tilnærmet naturlig tilstand. Videre er tilnærmet naturlig tilstand definert å være tilstanden slik den ville vært hvis ikke menneskelig aktivitet hadde påvirket vannforekomsten. Informasjon om tilnærmet naturlig tilstand er stort sett ikke tilgjengelig da biologiske og instrumentelle tidsserier ikke strekker seg langt nok tilbake i tid. Dette er spesielt kritisk i kystnære, estuarine områder hvor betydelige lokale variasjoner i miljøforholdene gjør hvert sub-miljø unikt og dermed begrenser påliteligheten av sammenliknende studier. Hovedformålet med den foreliggende undersøkelsen har følgelig vært å ta i bruk en ny metode for å definere stedegen "naturtilstand" på forskjellige lokaliteter i indre Oslofjord. I tillegg ønsket vi å karakterisere endringene i miljøkvalitet som har foregått på 1900-tallet og frem til i dag og eventuelle effekter av miljøforbedringstiltak på slutten av 1900-tallet. Metoden går ut på å utføre miljøstratigrafiske analyser, dvs. analyser av biologiske- og geokjemiske parametere i daterte sedimentkjerner fra havbunnen. Den biologiske komponenten er representert ved bentiske foraminiferer (protister) som responderer på endrede miljøbetingelser og som etterlater sine tomme (fossile) skall i sedimentet etter sin død. Ti sedimentkjerner fra indre Oslofjord ble samlet inn. Syv av disse ble aldersdatert ved hjelp av isotopene <sup>210</sup>Pb og <sup>137</sup>Cs. I alle kjernene ble vanninnhold og innhold av foraminiferer analysert. For utvalgte kjerner ble totalt organisk karboninnhold (TOC) og konsentrasjonen av syreløselige forurensningskomponenter som Cd, Zn og Pb analysert på utvalgte kjernedyp. Stasjonene ble valgt ut slik at tilsvarende vanndyp (ca 58, 85, 100 og 160 m), i områder med potensielt størst mulig sedimentakkumulasjon, på øst- og vestsiden av indre Oslofjord ble representert. I tillegg prøvetok vi en stasjon, SV for Bygdøy (55 m), som representerer bindeleddet mellom øst- og vestsiden av fjorden. En referansekjerne fra 157 m vanndyp rett syd for Drøbakterskelen (Im 4x) ble også samlet inn og analvsert for sammenlikning med miljøutviklingen på de dypeste stasjonene i Bunnefjorden (Ep1) og Vestfjorden (Fl 1-1). Hyppig trålede områder ble forsøkt unngått.

Akkumulasjonstraten av bentiske foraminiferskall viser relativt begrenset næringstilførsel til fjorden på 1700- og 1800-tallet. Faunasammensetningen avspeiler stort sett gode oksygenforhold i de undersøkte områdene med akseptabel økologisk tilstand (klasse 1-2) de fleste steder (unntak er visse sub-bassenger). Et faunaskifte (økning i opportunistiske, lavoksygen-tolerante arter), redusert artsdiversitet og økt produksjon av foraminiferer i de dypeste delene av Bunnefjorden i siste halvdel av 1800-tallet, avspeiler tidvis oksygensvikt på bunnen, sannsynligvis som følge av økt næringstilgang og tilførsel av organisk material. Bortsett fra dette, var undersøkelsesområdet på slutten av 1800-tallet dominert av to hovedfaunagrupper som avspeiler godt oksygenerte miljøforhold (tilstandsklasse 1-2). Den ene karakteriserte det sydlige dypbassenget i Vestfjorden og tilsvarende vanndyp syd for Drøbakterskelen, den andre dominerte hele resten av indre Oslofjord (inklusive Bunnefjorden frem til midten av 1800-tallet) på vanndyp større enn ca 50 m (dvs. dypere enn Bygdøy-Nesodden-terskelen). I Bunnefjorden tiltok den negative utviklingen på begynnelsen av 1900-tallet og endte med etablering av anoksiske bunnsedimenter på 1940-tallet, noe som har vart frem til i dag. I resten av indre Oslofjord avspeiler suksessive faunaendringer, redusert artsdiversitet og økt foraminiferproduksjon en økt eutrofiering og dårligere oksygenforhold i bunnsedimentene. De dårligste forholdene, tilsvarende tilstandsklasse 3-5, ble i de fleste områder etablert fra midten av1900-tallet og utover, med svake tegn til bedring i senere år. Selv om forurensningsbelastningen på fjorden har avtatt de siste tiårene, er det fremdeles mye

oksygenforbrukende, organisk materiale i sedimentene. Dette fører til en tidsforsinkelse med hensyn til restituering av bunnfaunaen. Mange arter som var vanlige i fjorden på slutten av 1800-tallet har i dag sterkt redusert bestand eller er helt borte.

# 1. Innledning

# 1.1. Bakgrunn for undersøkelsene

Miljøforholdene i indre Oslofjord har blitt betydelig forringet i løpet av det siste århundret på grunn av økt forurensning knyttet til befolkningsvekst og økt aktivitet i områdene rundt fjorden. Tiltak gjennomført de siste tiårene har søkt å bøte på skadene, men ennå gjenstår mye arbeid spesielt i henhold til EUs vanndirektiv (Directive 2000/06/EC) som setter krav til reetableing av "naturtilstanden" eller tilstandsklassen "God" eller bedre innen 2015.

Vanndirektivet beskriver "naturtilstanden" som slik forholdene ville vært uten menneskelig påvirkning og foreslår fire forskjellig måter å finne/beregne denne tilstanden på: 1) Sammenlikne med eksisterende uforstyrrede, eller nesten uforstyrrede, miljøer, 2) Ta i bruk historiske data, 3) Lage modeller, 4) Benytte ekspertvurderinger. En begrensing ved de forslåtte metodene ligger i at biologiske og instrumentelle tidsserier ikke er lange nok til å beskrive forholdene tilbake til "naturtilstanden". Dette er spesielt kritisk i kystnære, estuarine områder hvor betydelige lokale variasjoner i miljøforholdene gjør hvert sub-miljø unikt og dermed begrenser påliteligheten av sammenliknende studier. Det optimale sammenlikningsgrunnlag for evaluering av dagens økologiske status må være "naturtilstanden" slik den var på det aktuelle sted før forurensningen startet m.a.o. den stedegne naturtilstand. I samråd med Fagrådet for vann- og avløpsteknisk samarbeid i indre Oslofjord og NIVA ble "naturtilstanden" i de undersøkte deler av indre Oslofjord definert til å representere miljøforholdene på 1700-1800-tallet. Det er imidlertid klart at lokale områder som ikke omfattes av den foreliggende undersøkelsen, for eksempel Bjørvika, har vært betydelig preget av menneskelig aktivitet før dette. Ved undersøkelser i slike områder må miljøforholdene lenger tilbake i tid legges til grunn for sammenlikning med dagen situasjon.

# 1.2. Miljøstratigrafiske analyser og bentiske foraminiferer

En pilotstudie (Alve et al., 2009a) har vist lovende resultater fra en ny og kostnadseffektiv metode som kan benyttes til å finne den lokale naturtilstanden. Denne metoden tar i bruk en viktig gruppe små, encellede bentiske organismer ved navn foraminiferer som reflekterer miljøforholdene på fjordbunnen, og oppfyller dermed Direktoratsgruppas retningslinjer i henhold til å klassifisere miljøforholdene ut i fra forekomsten av bunnlevende organismer. De bentiske foraminiferene har så lenge Oslofjorden har eksistert levd og etterlatt sine tomme skall som fossiler, i fjordens sedimenter. Derfor reflekterer fordelingen av deres fossile skall i sedimentene miljøendringene som har foregått i fjorden over tusener av år, inklusive det siste århundret hvor miljøendringene i fjorden primært skyldes menneskelig aktivitet. Ved å hente opp sedimentkjerner fra havbunnen, datere disse og analysere foraminiferfaunaen og geokjemiske parametere som bevares i sedimentene har man et godt redskap til å rekonstruere miljøendringer gjennom tid. Slike studier betegnes miljøstratigrafiske undersøkelser.

# 1.3. Formål med undersøkelsen

Hovedmålet med undersøkelsen har vært å anvende Direktoratsgruppas klassifikasjonssystem (tab. 1) for klassifisering av miljøtilstanden i vann (Veileder 01:2009) på data fra fossile foraminiferfaunaer til å karakterisere naturtilstanden (dvs. miljøstatus) i forskjellige deler av indre Oslofjord før forurensningen av fjorden satte inn for fullt. I tillegg har målet vært å undersøke miljøutviklingen utover på 1900-tallet, se på eventuelle effekter av opprensningstiltak samt beskrive nåværende miljøstatus.

| Tilstands-<br>klasse | I<br>Svært god | II<br>God | III<br>Moderat | IV<br>Dårlig | V<br>Svært dårlig |
|----------------------|----------------|-----------|----------------|--------------|-------------------|
| H'                   | >3.8           | 3.0-3.8   | 1.9-3.0        | 0.9-1.9      | <0.9              |
| $\mathrm{ES}_{100}$  | >25            | 17-25     | 10-17          | 5-10         | <5                |
| mg Cd/kg             | <0.25          | 0.25-2.6  | 2.6-15         | 15-140       | >140              |
| mg Cu/kg             | <35            | 35-51     | 51-55          | 55-220       | >220              |
| mg Zn/kg             | <150           | 150-360   | 360-590        | 590-<br>4500 | >4500             |

Tab. 1. Tilstandsklasser med fargekoder i henhold til Vanndirektivet (fargene kan avvike noe). Klassegrensene for diversitetsindeksene H' og  $ES_{100}$  for kystnær bløtbunnsfauna er hentet fra tab. 7.6 i Veileder 01:2009 og for Cd, Cu og Zn i sedimenter fra tab. 7b i Veileder TA-2229/2007.

# 1.4. Områdebeskrivelse

Indre Oslofjord (fig. 1) består av to hovedbassenger, Vestfjorden og Bunnefjorden, adskilt av en 50 m dyp terskel mellom Nesoddtangen og Bygdøy. I tillegg til de to hovedfjordsystemene finnes flere mindre bassenger, som for eksempel Bærumsbassenget, Lysakerfjorden, Bekkelagsbassenget. Drøbaksterskelen (19 m vanndyp) i syd avgrenser indre Oslofjord fra resten av Oslofjorden. Indre Oslofjord er karakterisert av svært varierende bunntopografi med store dybdeforskjeller innen korte avstander. Maksimumsdyp både i Vestfjorden og Bunnefjorden er på ca 160 m.

Vannsirkulasjonen i Oslofjorden er estuarin med sprangsjikt (haloklin) på rundt 20 m vanndyp. Under dette er både temperatur (6-9 °C) og salinitet (32-34 psu) relativt stabile. I Vestfjorden foregår det nærmest fullstendig dypvannsfornyelse hvert år mens det i Bunnefjorden bare foregår hvert 3-4 år (Baalsrud og Magnusson, 2002). Kunnskap om oksygenforholdene i fjorden før regelmessige målinger startet i 1936 er meget mangelfull. Fra 1936 viste oksygen-konsentrasjonen en nedadgående trend med periodevis anoksia (uten fritt oksygen) på >70 m vanndyp i Bunnefjorden etter 1960 (se fig. 2 i Alve et al., 2009). Forholdene har bedret seg noe de siste tiårene.

Allerede på 1920-30-tallet begynte man å se effekten av økt befolkning, industri og landbruk i indre Oslofjord (Arnesen, 2001). Etterhver som forurensningene økte ble det stor diskusjon bland forskere og politikere/byråkrater om hvilke faktorer som hadde størst innvirkning på vannkvaliteten. Forskerene, med Braarud i spissen, mente at næringssalter (som fosfor) fra avløpsvann var den viktigste årsaken til algeoppblomstring som igjen førte til oksygensvikt, mens avløpsetaten mente forurensningen hovedsakelig skyldtes tilførselen av organisk materiale. NIVAs undersøkelser på 1960-tallet bekreftet viktigheten av å fjerne fosfor fra avløpsvannet. Utslippsmengden av næringssalter hadde gradvis økt utover 1900-tallet og nådde et maks rundt 1970-tallet (se fig. 43 i Baalsrud og Magnusson, 2002). Tilførselen av fosfor og nitrogen var nå blitt så høy at betydelige tiltak måtte settes inn for å bedre forholdene. Langsiktige løsninger ble laget og nye renseanlegg med avanserte renseprosesser bygget for å redusere utslippene av næringssalter gjennom avløpssystemene. Samtidig ble det rensede avløpsvannet ikke lenger sluppet ut i overflaten, men på større dyp hvor konsekvensene (dvs. sjanse for algeoppblomstringer) ble mindre. Siden slutten av 1970-tallet har forureningsbelastningen stadig avtatt og en positiv utvikling funnet sted. Reduserte utslipp av næringssalter og

organisk materiale har resultert i mindre konsentrasjoner av planteplankton (alger) og partikler i vannet og dermed bedre siktedyp, noe som i de grunne områdene har gitt bedre forhold for plante- (spesielt tang) og dyrelivet der. På intermediære dyp i fjorden har tiltakene visse steder ført til bedrede oksygenforhold (Magnusson et al., 2006). Fremdeles er imidlertid oksygenforholdene i de dypere deler av Bunnefjorden svært dårlige noe som også skyldes "oksygengjelden" i bunnsedimentene der.



Fig. 1. Kart over indre Oslofjord med dette prosjektets 10 stasjoner avmerket. I tillegg vises NIVAs bløtbunnsfaunastasjoner samt SPI-stasjoner (etter Nilsson, pers. med.).

# 2. Materiale og metoder

# 2.1. Feltarbeid

Sedimentkjernene ble samlet inn med UiOs forskningsfartøy F/F Trygve Braarud i februar og april 2009 (se tab. 2 for detaljer). For å optimere sjansene for gode stratigrafiske ananlyser og dateringer, ble stasjonene lagt til bassenger med størst mulig antatt sedimentakumulasjonsrate (tilførsel av sediment) og minst mulig forstyrrelser (tråling). I tillegg ble stasjonene forsøkt lagt til basseng hvor ulik grad av dypvannsutskiftning og til dels eutrofi har medført ulik grad av oksygensvikt.

Stasjoner med tilsvarende vanndyp (ca 160 m, 100 m, 85 m og 58 m) både i Vestfjorden og Bunnefjorden ble prøvetatt for at de ytre miljøforholdene for foraminiferene skulle være likest mulige og dermed sammenliknbare. Tilsammen ble dette 8 kjerner (fig. 1). Ytterligere to kjerner ble innhentet: Bo2-1, SV for Bygdøy, som representerer bindeleddet mellom øst- og vestsiden av fjorden, og Im4x like utenfor Drøbakterskelen som fungerer som referansekjerne for retrospektive miljøendringer like utenfor indre Oslofjord. Kjerne Bo2-1 ble prøvetatt på tilsvarende vanndyp som de to grunneste i Vestfjorden (Cj3-1) og Bunnefjorden (EA1), dvs. 55 m, mens Im4x ble prøvetatt på tilsvarende vanndyp som de dypeste stasjonene i Bunnefjorden (Ep1) og Vestfjorden (Fl1-1), dvs ca 160 m.

|         |            |            | Vanndyp | Innsamlet  | Ant.   | Lengde | Datert | Metall-  |
|---------|------------|------------|---------|------------|--------|--------|--------|----------|
| Kjerne  | Lengdegrad | Breddegrad | (m)     | (dd-mm-åå) | prøver | (cm)   |        | analyser |
| Ep1     | 59.789551  | 10.718650  | 152     | 23-04-09   | 41     | 61     | Ja     | Ja       |
| Cp3-1   | 59.835415  | 10.706800  | 101     | 23-04-09   | 30     | 39     | Ja     | Ja       |
| Bunn18x | 59.858215  | 10.696383  | 85      | 20-02-09   | 29     | 38     | Ja     | Ja       |
| EA1     | 59.850536  | 10.738063  | 58      | 23-04-09   | 27     | 33     | Nei    | Nei      |
| F11-1*  | 59.750900  | 10.575084  | 160     | 19-02-09   | 25     | 30     | Ja     | (Ja)     |
| Dk2-1*  | 59.817249  | 10.563367  | 99      | 23-04-09   | 29     | 37.5   | Nei    | Nei      |
| Dm2-1   | 59.826351  | 10.616199  | 85      | 20-02-09   | 33     | 46     | Nei    | Nei      |
| Cj31    | 59.844734  | 10.510067  | 58      | 23-04-09   | 22     | 24     | Ja     | Nei      |
| Bo2-1*  | 59.890549  | 10.665517  | 55      | 23-04-09   | 23     | 25     | Ja     | Ja       |
| Im4x    | 59.645035  | 10.613633  | 157     | 18-02-09   | 27     | 34     | Ja     | Ja       |

Tab. 2. Informasjon om de 10 sedimentkjernene fra indre Oslofjord samlet inn for miljøstratigrafiske analyser. Kjerner merket med \* (asterisk) viser tegn til forstyrrelse i hele eller deler av kjernen.

Sedimentkjernene ble samlet inn med en "Gemini-corer" som tar to kjerner (8 cm diameter) samtidig (fig. 2). Minst fire kjerner ble samlet inn på hvert sted og den beste av disse plukket ut til de retrospektive studiene. For de resterende tre kjernene ble toppen (0-6 cm) prøvetatt for eventuelle senere analyser av levende fauna. Deretter ble en kjerne skjøvet ut på dekk og delt i to på langs for observasjon.

# 2.2. Analyser

I laboratoriet ble alle kjernene delt opp i 1 cm tykke skiver for de øverste 0-20 cm og deretter i 2 cm tykke skiver for resten av kjernen (>20 cm). Samtlige prøver ble frysetørket og vanninnholdet analysert (se vedlegg 1). Syv utvalgte kjerner ble sendt til prof. Thorbjørn Joest Andersen ved Universitetet i København for aldersdatering. I denne analysen måles <sup>210</sup>Pb og <sup>137</sup>Cs via gammaspektrometri i en "Canberra ultralow-background Ge"-detektor. I tillegg er det foretatt en CRS modellering (Appelby, 2001).

Resultatene er presentert i vedlegg 2.1-2.7. I noen tilfeller har vi ekstrapolert aldersmodellen for å få en indikasjon om aldre nedover i kjernen utover der vi har

dateringspunkter. Ekstrapoleringen er basert på antagelsen om at de dypere deler kjernen har hatt en av konstant sedimentsjonshastighet, lik den som har vært mellom de nederste 2-3 daterte prøvene. Årstallene som er kommet frem ved ekstrapolering er satt i parentes for å understreke usikkerheten som knytter seg til disse tallene. Total organisk karbon (TOC, vedlegg 1) ble analysert i alle kjerner (bortsett fra DK2-1) ved hjelp av et "LECO Carbon Analyzer" instrument. Analyser av metallene sink, kobber og kadmium ble utført på seks kjerner (vedlegg 1). Metallanalysene er basert på HNO<sub>3</sub>-metoden (Norsk Standard NS4770, 1994). Klifs veileder TA-2229/2007 ble brukt for å finne hvilke tilstandsklasser metalldataene representerer. Vi er klar over at det anbefales i nevnte veileder at man gjør metallanalyser på tre replikater. Dette har vi ikke hatt mulighet til å gjøre pga mangel på tid og ressurser. Likevel mener vi metalldataene er gode støtteparametre



Fig. 2. En "Gemini-corer" på vei opp på dekk etter å ha hentet opp to kjerneprøver i fra bunnen av indre Oslofjord, februar 2009.

for foraminiferanalysene som er de sentrale i prosjektet. Foraminiferanalyser ble foretatt på materiale fra alle kjernene, men i de tilfeller hvor det var tegn til forstyrrelse i kjernene ble kun 2-3 prøver analysert. Foraminiferprøvene ble opparbeidet ved at man tok ut <2gram sediment fra det frysetørkede sedimentet. Subprøven ble vasket gjennom en sikt med maskevidde på 63µm og den største fraksjonen (>63µm) tørket og analysert ved hjelp av en binokulærlupe. Der mulig, ble >250 foraminiferindivider plukket ut, montert på egnede slides og identifisert til art. Diversitetsindeksene Shannon-Wiener  $(H'_{log2})$  og Hurlbert's indeks (ES<sub>100</sub>) ble utregnet ved hjelp av programmet PRIMER v.6.1.6 (Clarke and Gorley, 2006), og Direktoratsgruppas miljøklassifikasjonssystem basert på makrofauna (Veileder 01:2009 Klassifisering av miljøtilstanden i vann) brukt for å finne respektive økologiske tilstandsklasser. I de tilfeller hvor Shannon-Wiener ( $H'_{log2}$ ) og Hurlbert's indeks (ES<sub>100</sub>) for en og samme prøve ikke falt innenfor samme tilstandsklasse er miljøtilstanden satt ut i fra den "dårligste" av de to. Grenseverdiene i Direktoratsgruppas veileder fra 2009 avviker noe fra klassifikasjonssystemet til Molvær et al. (1997) som er blitt bruk i all foregående rapportering i prosjektet. De utledede tilstandsklasser i inneværende rapport er derfor ikke alltid identiske med de utledede tilstandsklasser tidligere rapporter. Akkumulasjonshastigheten av bentiske i foraminiferskall (her kalt foraminiferproduksion) ble beregnet ved å multiplisere antall individer per g tørt sediment med sedimentakkumulasjonsraten (Herguera, 1992). Likheten mellom foraminiferfaunaene i de enkelte prøvene ble beregnet ved Bray-Curtis likhetsindeks (kvadratrotstransformerte data) og plottet som dendrogram ved hjelp av PRIMER v.6.1.6 (Clarke and Gorley, 2006). Bortsett fra datering, ble alle analyser og beregninger utført ved Insitutt for Geofag (UiO).

# 3. Resultater for alle kjernene

#### 3.1. Ep1 (Bunnefjorden, 152 m vanndyp)



Fig. 3. Analyseresultater fra Ep1, inklusive vanninnhold, TOC, sink, kobber, kadmium, og som kolonner og piler til høyre, miljøtilstandsklassene basert på metall- og foraminiferdataene (fargekoder se tab. 1). Årstall i parentes er utregnet ved ekstrapolering og dermed bare ca tall.

#### Sedimentene:

Ep1-kjernens lengde er 61 cm (fig. 3). De øverste 22 cm består av et sort vannholdig sediment som avga en eim av hydrogensulfid (H<sub>2</sub>S) da vi delte opp kjernen. Deretter (under 22 cm) blir sedimentene mer og mer faste og fargen endret seg fra sort til grå (fig. 4). Helt nederst i kjernen ble det observert gamle børstemarkrør.

*Datering*: <sup>210</sup>Pb og <sup>137</sup>Cs ble analysert i de øverste 25cm av kjernen (vedlegg 2.1). To topper av <sup>137</sup>Cs ble observert rundt 7.5 cm og 19 cm. Basert på <sup>210</sup>Pb-aldersmodellen fikk disse <sup>137</sup>Cs-toppene en alder på 1989 og 1965, respektivt. Dette samsvarer godt med Chernobylulykken som fant sted i 1986 og atomprøvespregningene i 1963. På grunn av markante tetthetsendringer rundt 22 cm ned i kjernen er det vanskelig å oppnå en pålitelig kronologi under dette nivået. Årstallene i parentes er beregnet ved ekstrapolering og er derfor usikre.

#### *Metall- og TOC-data*:

Starter man nederst i kjernen og ser på utviklingen fremover i tid (dvs. fra 1800-tallet til nå) ser man en moderat økning i sink, kadmium og TOC fra 40 cm kjernedyp (ca år 1900). En mer markant økning i tungmetaller og TOC finner sted rundt 25 cm (ca 1936) og vedvarer til ca 13 cm (midten av 1970-tallet), før det igjen reduseres betraktelig frem til i dag. Miljøtilstanden for metall viser en referanseverdi/naturtilstand som var "svært god" eller "god", med en utvikling til "dårlig" på 1960-70 tallet og tilbake til "god" for de siste 10-15 årene.



Fig. 4. Replikatkjerne splittet på dekk like etter prøvetakning. De øverste 6 cm mangler på bildet, da disse er tatt ut for videre foraminiferanalyser.

#### Forminiferdata:

Tilstandsklassen ut i fra foraminiferdataene (fig. 3) viser at nederste prøve i Ep1 (60-61cm) kan klassifiseres som "svært god". Dette nivået tilsvarer trolig slutten av 1700-tallet eller tidlig 1800-tallet. De to neste prøvene (50-52 cm og 42-44 cm) viser tilstandsklassen "god". I første halvdel av 1900-tallet følger tre prøver med tilstandsklasse "moderat" for så å gå over til "svært dårlige" forhold de siste 50 år.

Den mest dominerende foraminiferarten i Ep1-kjernen er Stainforthia fusiformis. Sammen med Bolivinellina pseudopunctata, Bulimina marginata og Elphidium albiumbilicatum viser den en økende trend oppover i kjernen (fig. 5). Disse fire artene er kjent for å trives i organisk rike fjordsedimenter og kan tollerere lave mengder oksygen (Alve et al., 2009). Artene Adercotryma glomeratum/wrighti og Cassidulina laevigata derimot viser motsatt trend. Begge disse har høyest relativ forekomst i nedre del av kjernen og forsvinner helt mellom 25-30 cm (dvs. rundt midten av 1930-tallet). Trochammina sp. 1 har en topp rundt 30 cm, hvor den utgjør nesten 25% av den totale faunaen

og er den nest mest dominerende arten etter *S. fusiformis*. Det er ukjent hvilke miljøparametere som påvirker *Trochammina* sp. 1, men trolig trives den ikke i forholdene som begynte å gjøre seg gjeldene på 1930-tallet. Den forsvinner derfor sammen med *Adercotryma glomeratum/wrighti* ved 25 cm.



Fig. 5. Fordeling av de viktigste artene i Ep1-kjernen. Artenes prosentandel av den totale fauna er plottet mot dyp i kjernen. De øverste prøvene i Ep1 er ikke tatt med da antallet individer i disse prøvene var svært få.



#### 3.2. Cp3-1 (Bunnefjorden, 101 m vanndyp)

Fig. 6. Analyseresultater fra Cp3-1, inklusive vanninnhold, TOC, sink, kobber, kadmium, og som kolonner og piler til høyre, miljøtilstandsklassene basert på metall- og foraminiferdataene (fargekoder se tab. 1). Årstall i parentes er utregnet ved ekstrapolering og dermed bare ca tall.



Fig. 7. Replikatkjerne splittet på dekk like etter prøvetakning. De øverste 6 cm mangler på bildet.

#### Sedimentene:

Cp3-1-kjernen er 39 cm lang (fig. 6). De øverste 2 cm består av et sort og svært vannholdig sediment (nb: de øverste 6 cm er ikke synlig på bildet fig. 7). De neste 2 cm er litt mindre bløte og inneholder et mer brunlig sediment. Fra 4 til 10 cm går sedimentets farge over til mørkegrått, deretter stadig lysere grått nedover samtidig som det blir stadig fastere. I sedimentkjernen som ble skjøvet ut og splittet på dekk ble det observert et 1-2 cm tykt mørkt lag ca 10 cm ned i kjernen. Dette mørke laget ble ikke observert i den analyserte kjernen.

#### Datering:

Målte verdier av <sup>210</sup>Pb og <sup>137</sup>Cs i kjernens øvre halvdel (<19 cm) virker fornuftige. <sup>137</sup>Cs har en krarakteristisk topp som er satt til 1986, dvs. året for Chernobylulykken. Mye tyder derimot på at den nedre halvdelen, under 19 cm, har vært utsatt for forstyrrelser. Dette vises ved en drastisk endring i sedimenttetthet samt tilstedeværelse av <sup>137</sup>Cs i prøver hvor denne isotopen i teorien ikke skulle være tilstede. <sup>137</sup>Cs ble ikke frigitt i naturen før på midten av 1950-tallet og bør derfor ikke være tilstede i daterte prøver eldre enn dette slik som i vårt tilfelle. Thorbjørn Joest Andersen har satt opp to mulige aldresmodeller for denne kjernen, avhengig av om man antar at den nedre delen for forstyrret eller ikke. Vi har valgt å følge Thorbjørn Joest Andersen anbefaling og gå for den første modellen (se vedlegg 2.2, tabell 2a). Dette gir prøve 18-19 cm en alder tilsvarende ca år 1900. Under dette har vi ekstrapolert alderen. Disse tallene er usikre og derfor satt i parentes.

#### Metall- og TOC-data:

Det skjer en drastisk økning i sink, kadmium og kobber fra 1950-tallet frem til 1980. Deretter avtar metallverdiene kraftig frem til i dag. TOC-kurven viser samme trend med et maksimum på 1970-, '80 og '90-tallet, for så og halveres frem til i dag. Miljøtilstanden for metall viser en referanseverdi/naturtilstand som var "svært god" eller "god", med en utvikling til "dårlig" på 1970, '80 og '90-tallet og tilbake til "god" for de siste 5-10 årne.

#### Forminiferdata:

Diversitetsindeksene utregnet på bakrunn av foraminiferdataene viser at Cp3-1-kjernens nederste del (trolig fra 17-1800-tallet) kan klassifiseres til miljøtilstanden "god" (fig. 6). Denne klassen vedvarer oppover i kjernen til 1960-tallet hvor den endret seg til tilstandsklasse "moderat". På 1980-tallet kunne miljøtilstanden klassifiseres som "dårlig" før den igjen bedret seg til "moderat" på 2000-tallet.



Fig. 8. Fordeling av de viktigste artene i Cp3-1-kjernen. Relativ forekomst av den totale fauna er plottet mot dyp i kjernen. Den øverste analyserte prøven i Cp3-1 (dvs. 2-3 cm) er ikke tatt med da den inneholdt for få individer.

På samme måte som i foregående kjerne, dominerer arten *S. fusiformis* i de øverste, yngste sedimentlagene (fig. 8). Maksimum av *S. fusiformis* er på nøyaktig samme sted som maks metall-konsentrasjon (dvs. 5.5 cm, fig. 6). Kurven til *B. marginata* er påfallende lik kurven til *S. fusiformis*, bare i litt mindre skala (%-verdi) og litt tidsforskjøvet. Det kan synes som om denne arten responderer likt på miljøendringene som *S. fusiformis*, bare noe raskere og i mindre skala. Av arter som viser motsatt trend,

dvs. arter som avtar i mengde ettersom forurensningen tiltar er *A. glomeratum/wrighti* og *N. auricula/iridea*. Også disse kurvene er litt ute av fase, hvor nedgangen i *N. auricula/iridea* skjer litt før nedgangen i *A. glomeratum/wrighti*.



#### 3.3. Bunn18x (Bunnefjorden, 85 m vanndyp)

Fig. 9. Analyseresultater fra Bunn18x, inklusive vanninnhold, TOC, sink, kobber, kadmium, og som kolonner og piler til høyre, miljøtilstandsklassene basert på metall- og foraminiferdataene (fargekoder se tab. 1). B, under) Toppen av kjernen like etter prøvetakning. C, under) Replikatkjerne splittet på dekk like etter prøvetakning. De øverste 6 cm mangler på bildet, da disse er tatt ut for videre foraminiferanalyser.





#### Sedimentene:

Bunn18x-kjernen er 38 cm (fig. 9a). De øverste 0-12 cm består av et bløtt, sort, H<sub>2</sub>S-luktende sediment. Toppen var ganske "fluffy" og dekket av et gul-brunt belegg som trolig er bakterier (fig. 9b). Under 12 cm

ble sedimentene gradvis mer grå og faste (fig. 9c, nb: de øverste 6 cm mangler på bildet).

#### Datering:

Bunn18x ble som de øvrige kjerner datert med <sup>210</sup>Pb og <sup>137</sup>Cs (vedlegg 2.3). En topp av <sup>137</sup>Cs ble funnet på 5.5 cm kjernedyp og er antatt å være relatert til Chernobyl-hendelsen i 1986. Dette punktet ble satt som kronostratigrafisk markør og en CRS-modellering (Appelby, 2001) basert på regresjon foretatt. Bortsett

fra en tetthetsendring observert rundt 10 cm samt muligens noen svake forstyrrelser i de nedre deler av kjernen virker denne aldersmodellen svært lovende. Det endelige <sup>137</sup>Csprofilet passer relativt bra med "utslippshistorien" til denne isotopen. Den nest nederste prøven i kjernen (35 cm) ble datert til ca år 1870.

### *Metall- og TOC-data*:

Fra tidlig 1960-tallet skjer det en dramatisk økning av metall og TOC i sedimentene (fig. 9a). Denne økningen vedvarer frem til tidlig '80-tallet for så å minke kraftig frem til idag. En liten økning (topp) i metall- og TOC-verdier finner også sted fra midten av 1990-tallet til midten av 2000-tallet. For sink og kadmium betyr denne utviklingen et skifte i miljøtilstandsklasse fra forholdene "god" til "moderat", mens det for kobber er noe mer dramatsik. I henhold til dette metallet var forholdene "svært gode" frem til midten av 1930 for så å bli raskt forverret til "dårlige" på begynnelsen av 1940-tallet og med marginal bedring, dvs. endring til "moderat", først mot slutten av 2000-tallet.

#### Forminiferdata:

Diversitetsindeksene utregnet fra foraminiferene viser at nedre del av Bunn18x-kjernen, dvs. fra 1870- til 1940-tallet, hadde en miljøtilstand som kan kategoriseres som "god" (fig. 9a). På 1960-tallet endret denne seg til tilstandsklasse "moderat", for så å stadig forverres til "dårlig" og "svært dårlig" mot nyere tid.



Fig. 10. Fordeling av de viktigste artene i Bunn18x-kjernen. Artenes prosentandel av den totale fauna er plottet mot dyp i kjernen. Den øverste prøven i Bunn18x er ikke tatt med da antallet individer i denne prøvene var svært få.

*Stainforthia fusiformis* dominerer også denne kjernen (fig. 10), og fordobles fra 40% i bunnen av kjernen til 80% mot toppen (6.5 cm). Data fra den øverste analyserte prøven (1.5 cm) er ikke tatt med da antallet individer i denne prøven var svært få. Ser man bort fra forskjellen i %-verdi er kurvene til *B. marginata* og *B. pseudopunctata* nesten identiske gjennom kjernen. Begge toppene synes å komme litt i forkant av toppen i metall

og TOC, men for å bekrefte eller avkrefte dette bør flere foraminiferprøver analyseres mellom 5-20 cm. *A. glomeratum/wrighti* og *N. auricula/iridea* er blant de hyppigste artene i nedre halvdel av kjernen, med en liten faseforskjell på kurvene hvor igjen nedgangen i sistnevnte skjer først. Begge avtar proposjonalt med økningen av *S. fusiformis* og *B. marginata/B. pseudopunctata*.



### 3.4. EA1 (Bunnefjorden, 58 m vanndyp)

Fig. 11. Analyseresultater fra EA1, inklusive vanninnhold- og TOC-data. Pilene viser miljøtilstandsklassene basert på foraminiferdataene (fargekoder se tab. 1). Til høyre, replikatkjernen som ble splittet på dekk like etter prøvetakning. De øverste 6 cm mangler på bildet, da disse er tatt ut for videre foraminiferanalyser.

#### Sedimentene:

Bortsett fra de to øverste cm som var svakt brunlig av farge, består hele denne kjernen av et mørkegrått homogent sediment (fig. 11). Over 100 levende børstemark ble observert på overflaten og noen få også lenger nede i sedimentet. Kjernens lengde er 33 cm.

#### *TOC-data*:

Ser man på total organisk karbon-dataene fra bunnen og opp (fig. 11), ligger disse på rundt 0.5-1% frem til 7 cm hvor det skjer en gradvis økning til over 3% frem til toppen. Ingen nedgang mot toppen, som i de tre foregående kjerner, er observert.

#### Forminiferdata:

I EA1 viser foraminiferindeksene en miljøstatus som er "god" i de nedre deler av kjernen opp til 10 cm (fig. 11). Deretter går den over til "moderat" rundt 6.5 cm og til "dårlig" på rundt 3.5 cm for så å gå tilbake til "moderat" ved 1.5 cm. Ingen dateringer er gjort på denne kjernen så vi har dessverre ingen direkte årstall å knytte disse hendelsene til.



Fig. 12. Fordeling av de viktigste artene i EA1-kjernen. Artenes prosentandel av den totale fauna er plottet mot dyp i kjernen.

Stainforthia fusiformis og Bulimina marginata er de to viktigste artene i EA1 (fig. 12). Sammen med Elphidium albiumbilicatum øker disse kraftig mot toppen av kjernen. Nederste prøve er dominert av Nonionella auricula/iridea (18%), Pullenia osloensis (12%) og Cassidulina laevigata (7%).





Fig. 13. Analyseresultater fra Fl1-1, inklusive vanninnhold og TOC. Pilene viser miljøtilstandsklassene basert foraminiferdataene (fargekoder se tab. 1). Til høyre, kjernen før den blir delt opp i skiver i laboratoriet på Institutt for geofag.

#### Sedimentene:

Totallengde på Fl1-1-kjernen er 30 cm (fig. 13). Sedimentene er relativt homogene gjennom hele kjernen og brungrå av farge. Hull etter børstemark ble observert i de øverste 15 cm, med økende antall oppover.

# Datering:

Den beregnede fluxen av "unsupported" <sup>210</sup>Pb i de øvre 25 cm av kjernen er omlag 10 ganger større en forventet lokal atmosfærisk tilførsel, noe som tilsier at det her har funnet sted en sedimentfokusering (økt netto sedimenttilførsel fra omkringliggende områder). En svak topp av <sup>137</sup>Cs ble funnet rundt 1990 og er antatt å tilsvare Chernobyl-hendelsen i 1986. Datering av denne kjernen under 27 cm er ikke mulig, pga av en plutselig avtakende aktivitet av "unsupported" <sup>210</sup>Pb, men det er svært sannsynlig at bunnen av kjernen (29 cm) er minst 100 år gammel. Aldersmodellen kan studeres nærmere i vedlegg 2.4.

# TOC-data:

Innholdet av total organisk karbon viser en noe uvanlig fordeling i forhold til forventet, bortsett fra i nederste prøve (28-30 cm) som viser en tilnærmet normal bakgrunn på ca

1.5% (fig. 13). Herfra øker TOC-verdien raskt til hele 5.5% på 23 cm kjernedyp, for så å avta og ligge på 3-4% i resten av kjernens øverste 20 cm. Det unormalt stabile TOC-profilet i øvre del av kjernen understøtter antakelsen om sedimentfokusering/ resedimentasjon.

#### Forminiferdata:

Da den øvre delen av kjernen sannsynligvis inneholdt resedimenterte sedimenter, ble kun tre prøver ble analysert mhp foraminiferer i Fl1-1, dvs. en prøve fra bunnen (som reflekterer bakgrunnsforholdene), en fra midten og en fra toppen av kjernen. De to nederste kan ut i fra diversitetsindeksene klassifiseres til "svært god" miljøtilstand, mens den øverste har en tilstand som tilsvarer klassen "god" (fig. 13).



### 3.6. Dk2-1 (Vestfjorden, 99 m vanndyp)

Fig. 14. Analyseresultater fra Dk2-1, inklusive vanninnhold. Pilene viser miljøtilstandsklassene basert på foraminiferdataene (fargekoder se tab. 1). Replikatkjernen som ble splittet på dekk like etter prøvetakning er vist til høyre. De øverste 6 cm mangler, da disse er tatt ut for videre foraminiferanalyser.

#### Sedimentene:

Dk2-1 er 37.5 cm lang (fig. 14). Sedimentene er relativt homogene gjennom hele kjernen og brun-grå av farge. Hull etter børstemark ble observert i de øvre 15 cm, med økende antall oppover. Vi fikk i en tidlig fase indikasjoner på at denne kjernen til dels inneholdt

forstyrrede sedimenter. Dette blant annet ut i fra observasjoner av kjernen på dekk like etter prøvetakning samt under oppdeling av kjernen i laboratoriet. Vanninnholdsprofilet peker i samme retning.

#### Forminiferdata:

Da sedimentene i denne kjernen sannsynligvis var forstyrret, ble kun to foraminiferprøver analysert i Dk2-1, dvs. den nederste prøven i kjernen og prøven på 6.5 cm dyp. Diversitetsindeksen for den nederste prøven viser en tilstandsklasse av kategorien "god", mens den øverste analyserte prøven viser en tilstandsklasse som er "svært god" (fig. 14).



#### 3.7. Dm2-1 (Vestfjorden, 85 m vanndyp)

Fig. 15. Analyseresultater Dm2-1, inklusive vanninnhold og TOC. Pilene viser miljøtilstandsklassene basert på foraminiferdataene (fargekoder se tab. 1). Replikatkjernen som ble splittet på dekk like etter prøvetakning er vist til høyre. De øverste 6 cm mangler på bildet, da disse er tatt ut for videre foraminiferanalyser.

#### Sedimentene:

Kjerne Dm2-1 har en lengde på 46 cm (fig. 15). De øverste 13 cm bestod av et sort, bløtt sediment som luktet av H<sub>2</sub>S, bare avbrutt av et tynt lag med grått sediment på 3-4 cm. Fra 13cm og nedover blir sedimentene stadig mer grå og faste, og to små skjell blir observert på 24-26 cm. Lokaliteten hvor Dm2-1 er prøvetatt var et lite lokalt basseng med til dels anoksiske bunnforhold. Ingen datering ble utført på denne kjernen, så resultatene fra TOC og foraminiferanalysene er vanskelige å tidfeste. Ved å sammenlikne TOC-profilet i

denne kjernen med tilsvarende profil i daterte kjerner, er det imidlertid rimelig å anta at de lave verdiene på større enn 30 cm kjernedyp representerer avsetninger fra 1800- til tidlig på 1900-tallet.

#### *TOC-data*:

Nederste prøve i kjernen har en TOC på ca 1.5% (fig. 15). Derfra stiger det svakt til like under 2% ved 30 cm. Fra 30-15 cm skjer det en fordobbling av TOC-innholdet. I de øverste 15 cm varierer TOC-verdiene rundt 4% (maks 4.7%, min 3.2%) før de ender på 2.6% i øverste prøve.

#### Forminiferdata:

Diversitetsindeksene fra Dm2-1 viser en "god" miljøtilstand helt nederst i kjernen (fig. 15), midtre deler av kjernen kjennetegnes ved "moderate" forhold, mens toppen er karaketerisert av "dårlige" miljøforhold.



# 3.8. Cj3-1 (Vestfjorden, 58 m vanndyp)

Fig. 16. Analyseresultater fra Cj3-1, inklusive vanninnhold og TOC. Pilene viser miljøtilstandsklassene basert på foraminiferdataene (fargekoder se tab. 1). Bildet til høyre viser kjernen på dekk like etter prøvetakning.

#### Sedimentene:

Cj3-1 er 24 cm lang og består av et grått homogent sediment, som er svakt bunlig mot toppen (fig. 16). Flere molluskskall ble observert i de nederste 12 cm av denne kjernen.

# Datering:

To dateringsmodeller ble laget for denne kjernen ut i fra målinger av <sup>210</sup>Pb og <sup>137</sup>Cs, hvorav den siste og utvalgte er en revisjon av den første (vedlegg 2.5). I revisjonen har man tatt hensyn til at tre tynne lag ved 10.5 cm, 16.5 cm og 21 cm har et lavere innhold av <sup>210</sup>Pb enn forventet. Dette skyldes trolig en resedimentasjon av eldre sedimenter med lavere <sup>210</sup>Pb. Ved å korrigere for disse nivåene estimeres alderen på <sup>137</sup>Cs-toppen (som antas å være relatert til Chernobyl-hendelsen i 1986) ved 6.5 cm til 1981 mens den i forrige modell var 1978. Med andre ord marginalt bedre. Denne modellen blir derfor foretrukket.

### *TOC-data*:

Nederste prøve i Cj3-1, som er fra tidlig 1900-tallet, har et TOC-innhold på litt under 2% (fig. 16). Fra 1930-tallet øker innholdet av TOC gradvis og når en topp på litt under 3.5% som strekker seg over 1970, '80 og '90-tallet. En svak nedgang er deretter observert frem til i dag.

### Forminiferdata:

Foraminiferindeksene fra Cj3-1 viser en miljøstatus som tilsvarer klasse "svært god" i nederste prøve fra tidlig 1900-tallet (Fig. 16). Fra 1950- og tidlig 1960-tallet var miljøstatusen"god", og "moderat" på 1970-tallet og ut 1990-tallet. Den øverste prøven (0.5 cm) som er omtrent nåtid viser igjen tilstandsklassen "god".



Fig. 17. Fordeling av de viktigste artene i Cj3-1-kjernen. Artenes prosentandel av den totale fauna er plottet mot dyp i kjernen.

*Stainforthia fusiformis* er den dominerende arten gjennom hele kjernen og den øker i prosentverdi gjennom hele kjernen bortsett fra i toppen hvor den har en svak nedgang (fig.

17). Den nest viktigste arten er *Bulimina marginata* som har høyeste verdier mellom 5 og 15 cm (dvs. 1950-1990-tallet). I kjernens nederste del er i tillegg *A. glomeratum/wrighti*, *Cassidulina laevigata* og *Nonionella labradorica* viktige. På samme måte som i flere andre kjerner viser alle disse en avtagende trend oppover i kjernen og avspeiler en utvikling mot dårligere miljøforhold.



### 3.9. Bo2-1 (Lysakerfjorden, mellom Vestfjorden og Bunnefjorden)

Fig. 18. Analyseresultater fra Bo2-1, inklusive vanninnhold, TOC, sink, kobber, kadmium, og som kolonner og piler til høyre, miljøtilstandsklassene basert på metall- og foraminiferdataene (fargekoder se tab. 1). Årstall i parentes er utregnet ved ekstrapolering og dermed bare ca tall.

#### Sedimentene:

Bo2-1 er 25 cm lang (figs. 18-19). De øverste 11 cm består av et mørkegrått homogent sediment som er en anelse brunlig. Under dette blir brunfargen borte og sedimentet synes noe lysere grått. Hull etter børstemarkaktivitet blir observert nederst i kjernen.

#### Datering:

Formen på <sup>210</sup>Pb og <sup>137</sup>Cs-profilene og mangel på Chernobyl-topp indikerer at kjernen sannsynligvis er forstyrret, i hvertfall i øverste halvdel (vedlegg 2.6). De gitte dateringer er derfor svært usikre. Dette gjelder også tallene i parentes som er regnet ut ved ekstrapolasjon.

#### Metall- og TOC-data:

Metall- og TOC-profilene er svært like (fig. 18). Alle viser en svak økning fra bunnen og frem til ca 12 cm fra toppen. Deretter skjer en mer markant økninge fra ca 12 cm til 9 cm.

Bortsett fra et lokalt minimum på 7-8 cm, er TOC- og Cu-verdiene relativt stabile, mens Zn og Cd viser en nedgang i øvre del av kjernen.



#### *Foraminiferdata*:

To miljøtilstandsklasser dominerer Bo2-1-kjernen (Fig. 18). Dette er klassen "god" som finnes i prøvene fra nedre del av kjernen (muligens fra 16-1800-tallet) og klassen "moderat" som kjennetegner prøvene fra kjernens øvre halvdel (1900-tallet frem til i dag). Også i Bo2-1 dominerer artene fusiformis, Stainforthia Bulimina marginata, Elphidium albiumbilicatum Bolivinellina og pseudopunctata, og samtlige viser en gradvis økning oppover i kjernen.

Fig. 19. Replikatkjerne splittet på dekk like etter prøvetakning. De øverste 6 cm mangler på bildet, da disse er tatt ut for videre foraminiferanalyser.



3.10. Im4x (i Drøbaksundet like utenfor Drøbaksterskelen, 157 m vanndyp)

Fig. 20. Analyseresultater fra Im4x, inklusive vanninnhold, TOC, sink, kobber, kadmium, og som kolonner og piler til høyre, miljøtilstandsklassene basert på metall- og foraminiferdataene (fargekoder se tab. 1).

#### Sedimentene:

Im4x-kjernen er 34 cm lang (figs. 20-21). De øverste 3 cm har brungrå farge. Deretter er sedimentene grå helt ned til bunnen. Fastheten øker med dyp og sammensetningen blir mer sandholdig nedover. Hull etter børstemark ble observert i nedre del av kjernen.

#### Datering:

Aldersmodellen er basert på <sup>210</sup>Pb og <sup>137</sup>Cs-målinger og CRS-modellering (vedlegg 2.7). <sup>210</sup>Pb indikerer en svak blanding i de øvre 7 cm av kjernen, og muligens noe sedimentfokusering i resten av kjernen. Likevel anses aldersmodellen som relativt fornuftig, spesielt ut fra tilstedeværelsen av <sup>137</sup>Cs.

#### *Metall og TOC-data*:

IM4x-kjernens innhold av metaller og TOC (fig. 20) er endel lavere enn hva som er observert i kjernene fra indre Oslofjord. Likevel viser kobber- og TOC-kurvene liknende trender, med høyeste verdier på 1970- og '80-tallet for så å avta frem til i dag.



Fig. 21. Replikatkjerne splittet på dekk like etter prøvetakning. De øverste 6 cm mangler på bildet, da disse er tatt ut for videre foraminiferanalyser.

Miljøtilstandsklassene ut i fra metallanalysene blir aldri dårligere en tilstanden "god" og basert på kobberverdiene er naturtilstanden som var gjeldende på begynnelsen av 1900tallet nylig gjeninnført.

#### Forminiferdata:

Gjennom hele Im4x-kjernen gir foraminiferdataene diversitetsindekser som faller inn under tilstandsklassen "svært god" (se fig. 20). Nedre halvdel av Im4x domineres av Brizalina skagerrakensis og B. spathulata samt Cassidulina laevigata (fig. 22). I øvre halvdel øker andelen av den opportunistiske arten Stainforthia fusiformis, men den gjør seg ikke tilnærmelsesvis så sterkt gjeldene som i indre fjord.



Fig. 22. Fordeling av de viktigste artene i Im4x-kjernen. Artenes prosentandel av den totale fauna er plottet mot dyp i kjernen.

# 4. Diskusjon og oppsummering

#### 4.1. Endringer i næringstilførsel og eutrofieringssignaler

Som for annen bunnfauna, varierer produksjonen av bentiske foraminiferer med næringstilgangen. I fossile faunaer kommer dette til uttrykk ved endringer i konsentrasjonen av fossile skall i sedimentene. Med mindre man har en god datering av de analyserte sedimentene, presenteres dette gjerne som antall individer per gram tørt sediment. Hva individkonsentrasjonen faktisk reflekterer, er imidlertid påvirket av sediment-akkumulasjonsraten. Hvis sedimentasjonsraten har endret seg over tid, eller man skal sammenlikne områder med forskjellig sedimentasjonsrate, må sammenlikninger baseres på foraminiferproduksjonen uttrykt ved antall individer avsatt pr areal pr tidsenhet. Denne type beregninger forutsetter gode aldersdateringer. Dateringsresultatene i denne undersøkelsen (Vedlegg 2.1-2.7) viser at sedimentakkumulasjonsraten i indre Oslofjord varierer mellom bassengene og, i noen tilfeller, over tid i samme basseng. Av de analyserte kjernene er det fire som viser gode nok resultater til å gi informasjon om endringer i foraminiferproduksjonen over tid (fig. 23). Av disse er en fra 58 m vanndyp i Vestfjorden (Cj 3-1) og tre fra 85-160 m dyp i Bunnefjorden (Ep1, Cp3-1 og Bunn18x).



Fig. 23. Endringer i foraminiferproduksjon (antall individer/cm<sup>2</sup>/år) i fire daterte sedimentkjerner fra indre Oslofjord. Høye verdier i kjernen fra 100 m vanndyp i Bunnfjorden avspeiler betydelig eutrofiering midt på 1900-tallet, mens reduserte verdier på begynnelsen av 1900-tallet i kjernen fra 160 m avspeiler økt oksygensvikt i bunnvannet som endte med permanent død bunn.

Resultatene viser at produksjonen på 1700- og begynnelsen av 1800-tallet lå på <30 individer/cm<sup>2</sup>/år. Mot slutten av 1800- og utover på 1900-tallet økte produksjonen og nådde maksimumsverdier på rundt 100 individer/cm<sup>2</sup>/år på 1950-1970-tallet på intermediære dyp i vestlige deler av Bunnefjorden for så å avta (kjerne Cp 3-1), muligens som resultat av redusert næringstilgang. Utviklingen på noe grunnere vann, 85 m dyp, lenger nord i Bunnefjorden (kjerne Bunn 18x) viser også en redusert produksjon i senere år sammenliknet med 1970-tallet. Forklaringen her er sannsynligvis oksygensvikt i bunnsedimentene som har en utarmende effekt på faunaen. Denne tolkningen underbygges ved en sterk økning av *Stainforthia fusiformis* (til >80%, fig. 10) og endring i artsdiversitet som avspeiler utvikling mot betydelig dårligere miljøkvalitet (tilstandsklasse 5, meget dårlig, fig. 9).

Økt produksjon av foraminiferer utover på 1900-tallet er også reflektert i flere av de andre kjernene og avspeiler økt eutrofiering (Vedlegg 3). I de dypeste delene av Bunnefjorden (160 m) øker verdiene (relativt til bakgrunnen) gjennom 1800-tallet og frem til århundreskiftet, med påfølgende dramatisk reduksjon og død bunn fra 1940-tallet. Utviklingen tidlig på 1900-tallet er i samsvar med de første, spredte observasjonene i området (Beyer og Føyn, 1951). På 58 m i Vestfjorden foregikk den økte produksjonen primært på midten av 1900-tallet og har vært relativt stabil siden 1970-tallet (dvs uten tydelig nedgang i senere år). I områder hvor næringstilgangen har vært høy over lengre tid, vil det være mye næring lagret i sedimentet. For arter som kan ernære seg på dødt organisk detritus, bakterier og nedbrytningsprodukter vil dette kunne medføre at effekten av redusert næringssaltutslipp (og derved organisk materiale til sedimentene) blir tidsforsinket (Alve, 2010).

# 4.2. Faunautviklingen i indre Oslofjord fra "naturtilstand" til i dag

Likhetsanalysen deler foraminiferfaunaene inn i tre hovedgrupper og hver av dem er igjen delt i to subgrupper (fig. 24). Den ene hovedgruppen omfatter prøvene fra kjernen syd for Drøbakterskelen (Im4x) samt eldste og yngste prøve i kjernen fra dypbassenget i Vestfjorden (Fl 1-1). Den andre hovedgruppen omfatter prøvene fra alle de eldste delene av kjernene i indre Oslofjord, samt prøven fra den midtre delen av kjerne Fl 1-1 i Vestfjorden. Den tredje hovedgruppen representerer faunaer som har dominert på intermediære og større vanndyp i indre Oslofjord siden 1970-tallet, og i noen tilfeller lenger (fig. 25). På samme måte som hovedgruppene, viser også fordelingen av subgruppene samme suksessive utvikling gjennom hele undersøkelsesområdet, selv om tidspunktet for endringen fra en fauna til en annen viser lokale variasjoner. Dette avspeiler at før forurensningen av indre Oslofjord satt inn for fullt på 1900-tallet var foraminiferfaunaen på større vanndyp enn Bygdøy-Nesoddenterskelen relativt ensartet og skilte seg ut fra faunaen syd for Drøbakterskelen. Et unntak var en "kile" av den mer sydlige faunaen som forekom i det dypeste bassenget i Vestfjorden (F11-1). Diversitetsverdiene viser at alle faunaene på 1700- og 1800- tallet reflekterer tilstandsklasse 1 eller 2 (Fig. 26) og vi betrakter disse som å reflektere "naturtilstanden" på de undersøkte stedene i indre Oslofjord. Dette er i motsetning til to andre nylig undersøkte bassenger i indre fjord, Bærumsbassenget (Alve et al., 2009b) og et subbasseng på 79 m vanndyp øst i Bunnefjorden (kjerne JEG i Enoksen, 2010). I disse bassengene ble forholdene på 1700-tallet, med hhv tilstandsklasse 5 (meget dårlig) og 3 (mindre god) ansett å representere "naturtilstanden" (fig. 26).

Utover på 1900-tallet endret faunaen i indre Oslofjord karakter, ble mer artsfattig og dominert av arter som tolererer eutrofiering og nedsatt oksygenkonsentrasjon. De dårligste forholdene, tilsvarende tilstandsklasse 3-5, ble i de fleste områder etablert fra midten av1900-tallet og utover, med svake tegn til bedring i senere år. I Bunnefjordens dypbasseng endte den negative faunautviklingen som startet allerede på slutten av 1800tallet med at hele faunaen døde ut på 1940-tallet. På intermediære vanndyp i Bunnefjorden har utviklingen i miljøkvaliteten vist til dels store lokale variasjoner, bl.a. med utvikling av meget dårlig miljøstatus (klasse 5) på 85 m vanndyp i NV (kjerne Bunn 18x), mens forholdene på noe større vanndyp (100 m, kjerne Cp 3-1 med lavere sedimentasjonsrate og lavere tilførsel av organik karbon) lenger syd, har holdt seg på Mindre god-Dårlig (klasse 3-4). I motsetning til faunaene i indre fjord, viser faunaen syd for Drøbakterskelen bare minimal endring siden begynnelsen av 1900-tallet (eldste analyserte prøve) og den økologiske tilstanden har holdt seg innen rammene av tilstandsklasse 1, meget god.

Det har følgelig foregått betydelige endringer i faunasammensetningen til bentiske foraminiferer i indre Oslofjord siden slutten av 1800-tallet og mange arter har enten blitt helt borte eller blitt betydelig redusert. Til sammenlikning har endringene i løpet av det samme tidsrom vært meget moderate i bassenget utenfor, rett syd for Drøbakterskelen.



Fig. 24. Dendrogram som viser likheten mellom foraminiferfaunaen i de enkelte prøvene. Tre hovedgrupper, markert rosa, gul og grønn, er definert og hver gruppe er delt i to subgrupper (mørk og lys variant av fargen for hovedgruppen). Tall etter kjernenummer (prøvenavn) angir dybden (cm) i sedimentet.



Fig. 25. Summarisk utbredelse av subgruppene i tid og rom ut fra opptreden i de analyserte kjernene. Grå farge angir meget individfattig eller ingen fauna.



Fig. 26. Dagens miljøstatus (liten sirkel) sammenliknet med "naturtilstanden" (stor sirkel) på hver av de 10 sedimentkjernene analysert i dette prosjektet, samt på en stasjon fra Bærumsbassenget (Alve et al., 2009b) og en stasjon (JEG) i et sub-basseng i Bunnefjorden (Enoksen, 2010).

#### 4.3. Avsluttende kommentarer

Denne undersøkelsen har primært søkt å illustrere hvordan miljøstratigrafiske analyser kan gi informasjon om naturtilstanden i et område, her indre Oslofjord. Den dekker lange tidsserier, relativt til det som fremskaffes ved konvensjonell biologisk miljøovervåkning. For å få en bedre tidsoppløsning av miljøutviklingen i de enkelte bassengene, må det gjennomføres mer detaljerte studier av de enkelte kjernene. Resultatene viser imidlertid at metoden har et stort potensiale for å karakterisere endringer i økologisk tilstand i sedimentakkumulasjonsbassenger, selv i områder med lite eller ingen tilgjengelig bakgrunnsinformasjon. Det sistnevnte gjelder spesielt for områder med relativt betydelige lokale variasjoner som for eksempel i Bunnefjorden, hvor miljøstatus for naturtilstanden og tidspunktet for endringer i miljøstatus varierer innen bassenget. I den foreliggende undersøkelsen har vi benyttet Direktoratsgruppas system for klassifisering av miljøtilstand basert på diversitetsverdier for bløtbunns makrofauna (Veileder 01: 2009). Dette er en svakhet, fordi vi ikke vet om grenseverdiene mellom tilstandsklassene er de samme for bentiske foraminiferer som for makrofauna. I tillegg foreligger det per i dag ingen informasjon om fordelingen av levende bentiske foraminiferer i indre Oslofjord og hvordan denne varierer under ulike miljøbetingelser. For å bøte på dette og derved øke anvendbarheten av miljøstratigrafiske undersøkelser i norske kystområder bør man gjennomføre økologiske analyser av de bentiske foraminiferfaunaene i indre Oslofjord, sammenlikne resultatene med makrofaunadata fra samme stasjoner og foreta en kalibrering av grenseverdiene mellom tilstandsklassene for de to faunagruppene. Slike studier gjennomføres for tiden på faunaer langs den norske Skagerrak-kysten innen det NFR-støttede PES-prosjektet (http://www.geo.uio.no/pes/).

# 5. Referanser

Alve, E., 2010. Benthic foraminiferal responses to absence of fresh phytodetritus: a two year experiment. Mar. Micropaleontol., 76: 67-75.

Alve, E., Lepland, A, Magnusson, J og Backer-Owe, K. 2009a. Monitoring strategies for re-establishment of ecological reference conditions: possibilities and limitations. Marine Pollution Bulletin, 59: 297-310.

Alve, E., Helland, A. og Magnusson, J., 2009b. Bærumsbassenget et naturlig anoksisk bassen? NIVA rapport L. NR. 5735-2009: 36 pp.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands, 1 (3): 171-203.

Arnesen, V., 2001. The pollution and protection of the inner Oslofjod: Redefining the goals of wastewater treatment policy in the 20th century. Ambio, 30 (4-5): 282-286.

Baalsrud, K. og Magnusson, J., 2002. Indre Oslofjord – natur og miljø. Fagrådet for vannog avløpsteknisk samarbeid i indre Oslofjord, 135 pp.

Beyer, F. and Føyn, E., 1951. Surstoffmangel i Oslofjorden. En kritisk situasjon for fjordens dyrebestand. In: Naturen. Bergen, Norway, 75. Årgang: 289-306.

Clarke, K.R. and Gorley, R.N. 2006. Primer v6: user manual/tutorial. Primer-E Ltd.

Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, OJ L 327, 22.12.2000, 1–73.

Enoksen, J.H., 2010. Environmental status: From "natural" to polluted conditions in the Bunnefjord, inner Oslofjord. MSc thesis in Geosciences, University of Oslo, 75 pp.

Herguera, J.C., 1992. Deep-sea foraminifera and biogenic opal: Glacial to postglacial productivity changes in the western equatorial Pacific. Mar. Micropaleontol., 19: 79-98.

Magnusson, J., Andersen, T., Amundsen, R., Berge, J., Bjerkeng, B., Gjøsæter, J., Hylland, K., Johnsen T., Lømsland E., Paulsen Ø., Ruus A., Schøyen, M., Walday, M., 2006. Overvåking av forurensningsitusjonen i indre Oslofjord 2005. NIVA report 5242-2006, 102 pp.

Molvær, J., Knutzen, J., Magnusson, J., Rygg, B., Skei, J., Sørensen, J., 1997. Classification of environmental quality in fjords and coastal waters. A guide. Statens forurensningstilsyn. Veiledning 97: 03, 36 pp.

Norsk Standard 4770, 1994. Vannundersøkelse. Metaller i vann, slam og sedimenter. Bestemmelse ved atomabsorpsjonsspektrometri i flamme. Generelle prinsipper og retnings-linjer. 2. Utg.

TA-2229/2007 (SFT). Veileder for klassifisering av miljøgifter i vann og sediment. Revidering av klassifisering av metaller og organiske miljøgifter i vann og sedimenter. 11 pp.

Veileder 01:2009 (Direktoratsgruppa for gjennomføringen av vanndirektivet). Klassifisering av miljøtilstanden i vann. Økologisk og kjemisk klassifiseringssystem for kystvann, innsjøer og elver i henhold til vannforeskriften. 180 pp.

# Kjerne: Ep1 (=Ep4-1)

| Kjerne- | Gj.snitts- |        | Vann-   |          |      |       |        |         |
|---------|------------|--------|---------|----------|------|-------|--------|---------|
| dyp     | dyp        | Alder  | innhold | Kjerne-  | TOC  | Sink  | Kobber | Kadmium |
| (cm)    | (cm)       |        | (%)     | dyp (cm) | (%)  | (ppm) | (ppm)  | (ppm)   |
| 0-1     | 0.5        | 2009   | 89.256  | 0-2      | 2.76 | 208   | 39     | 1.60    |
| 1-2     | 1.5        |        | 85.365  | 3-4      | 3.20 | 256   | 57     | 2.19    |
| 2-3     | 2.5        |        | 88.496  | 6-8      | 3.81 | 292   | 69     | 2.60    |
| 3-4     | 3.5        | 2000   | 89.986  | 9-10     | 3.93 | 317   | 75     | 2.99    |
| 4-5     | 4.5        |        | 88.433  | 12-14    | 4.83 | 893   | 220    | 4.37    |
| 5-6     | 5.5        | 1994   | 86.869  | 16-18    | 3.89 | 807   | 142    | 2.76    |
| 6-7     | 6.5        |        | 88.538  | 20-22    | 3.04 | 559   | 70     | 2.00    |
| 7-8     | 7.5        | 1989   | 88.873  | 22-24    | 2.89 |       |        |         |
| 8-9     | 8.5        |        | 88.419  | 24-26    | 2.45 | 275   | 46     | 1.58    |
| 9-10    | 9.5        | 1984   | 90.780  | 26-28    | 2.54 | 275   | 39     | 1.39    |
| 10-11   | 10.5       |        | 90.980  | 30-32    | 2.37 |       |        |         |
| 11-12   | 11.5       | 1980   | 89.673  | 32-34    |      | 232   | 29     | 1.00    |
| 12-13   | 12.5       |        | 88.981  | 34-36    | 1.95 |       |        |         |
| 13-14   | 13.5       | 1976   | 89.540  | 38-40    | 1.71 | 176   | 26     | 0.80    |
| 14-15   | 14.5       |        | 89.008  | 42-44    | 1.68 | 169   | 25     | 1.00    |
| 15-16   | 15.5       | 1972   | 88.338  | 46-48    | 1.58 | 172   | 25     | 0.99    |
| 16-17   | 16.5       |        | 89.774  | 50-52    | 1.45 | 222   | 24     | 0.78    |
| 17-18   | 17.5       | 1968   | 89.121  | 54-56    | 1.49 | 160   | 24     | 0.79    |
| 18-19   | 18.5       |        | 86.890  | 60-61    | 1.44 | 164   | 24     | 0.78    |
| 19-20   | 19.5       | 1961   | 87.939  |          |      |       |        | -       |
| 20-22   | 21.0       |        | 84.406  |          |      |       |        |         |
| 22-24   | 23.0       | 1956   | 81.431  |          |      |       |        |         |
| 24-26   | 25.0       | 1936   | 77.772  |          |      |       |        |         |
| 26-28   | 27.0       |        | 71.200  |          |      |       |        |         |
| 28-30   | 29.0       |        | 72.372  |          |      |       |        |         |
| 30-32   | 31.0       |        | 71.155  |          |      |       |        |         |
| 32-34   | 33.0       | (1900) | 70.155  |          |      |       |        |         |
| 34-36   | 35.0       |        | 70.090  |          |      |       |        |         |
| 36-38   | 37.0       |        | 68.321  |          |      |       |        |         |
| 38-40   | 39.0       |        | 67.797  |          |      |       |        |         |
| 40-42   | 41.0       |        | 67.329  |          |      |       |        |         |
| 42-44   | 43.0       |        | 66.869  |          |      |       |        |         |
| 44-46   | 45.0       | (1850) | 66.092  |          |      |       |        |         |
| 46-48   | 47.0       |        | 65.590  |          |      |       |        |         |
| 48-50   | 49.0       |        | 64.053  |          |      |       |        |         |
| 50-52   | 51.0       |        | 63.377  |          |      |       |        |         |
| 52-54   | 53.0       |        | 63.054  |          |      |       |        |         |
| 54-56   | 55.0       | (1800) | 62.756  |          |      |       |        |         |
| 56-58   | 57.0       |        | 63.422  |          |      |       |        |         |
| 58-60   | 59.0       |        | 62.981  |          |      |       |        |         |
| 60-61   | 60.5       |        | 61.047  |          |      |       |        |         |

# Kjerne: Cp3-1

| Kjerne-  | Gjennomsnitts- |        | Vann-       | TOC  | Sink  | Kobber | Kadmium |
|----------|----------------|--------|-------------|------|-------|--------|---------|
| dyp (cm) | dyp (cm)       | Alder  | innhold (%) | (%)  | (ppm) | (ppm)  | (ppm)   |
| 0-1      | 0.5            | 2008   | 94.58       |      |       |        |         |
| 1-2      | 1.5            | 2007   | 90.36       | 3.15 | 221   | 50     | 1.38    |
| 2-3      | 2.5            | 2004   | 80.65       | 4.46 | 509   | 105    | 2.35    |
| 3-4      | 3.5            | 1997   | 78.44       | 4.35 | 598   | 129    | 2.59    |
| 4-5      | 4.5            | 1986   | 78.76       | 4.63 | 689   | 148    | 2.95    |
| 5-6      | 5.5            | 1980   | 78.02       | 4.66 | 825   | 187    | 3.14    |
| 6-7      | 6.5            | 1975   | 73.32       | 3.94 | 707   | 149    | 2.55    |
| 7-8      | 7.5            | 1971   | 69.66       | 3.53 | 595   | 119    | 2.18    |
| 8-9      | 8.5            | 1966   | 67.51       | 2.91 | 493   | 93     | 1.78    |
| 9-10     | 9.5            | 1959   | 65.96       | 2.76 | 309   | 76     | 1.60    |
| 10-11    | 10.5           | 1953   | 67.28       |      |       |        |         |
| 11-12    | 11.5           | 1949   | 66.22       | 2.31 | 288   | 46     | 1.19    |
| 12-13    | 12.5           | 1944   | 64.98       |      |       |        |         |
| 13-14    | 13.5           |        | 64.98       | 2.00 | 248   | 37     | 1.19    |
| 14-15    | 14.5           |        | 63.11       |      |       |        |         |
| 15-16    | 15.5           | 1930   | 63.00       | 1.73 | 214   | 31     | 1.00    |
| 16-17    | 16.5           |        | 61.15       |      |       |        |         |
| 17-18    | 17.5           |        | 61.03       | 1.58 | 195   | 28     | 0.99    |
| 18-19    | 18.5           | 1900   | 59.63       |      |       |        |         |
| 19-20    | 19.5           |        | 58.73       | 1.55 | 185   | 28     | 0.97    |
| 20-22    | 21.0           |        | 57.86       |      |       |        |         |
| 22-24    | 23.0           |        | 57.82       | 1.47 | 174   | 26     | 0.80    |
| 24-26    | 25.0           | (1850) | 57.74       |      |       |        |         |
| 26-28    | 27.0           |        | 58.13       | 1.44 | 174   | 26     | 0.77    |
| 28-30    | 29.0           |        | 57.62       |      |       |        |         |
| 30-32    | 31.0           | (1800) | 57.91       | 1.36 | 171   | 25     | 0.80    |
| 32-34    | 33.0           |        | 57.60       |      |       |        |         |
| 34-36    | 35.0           |        | 57.17       | 1.33 | 161   | 24     | 0.78    |
| 36-38    | 37.0           |        | 56.89       |      |       |        |         |
| 38-39    | 38.5           | (1750) | 56.52       | 1.33 | 162   | 25     | 0.80    |

# Kjerne: Bunn18x (=AA4)

| Kjerne-  | Gj. snitts- |       | Vann-       | TOC  | Sink  | Kobber | Kadmium |
|----------|-------------|-------|-------------|------|-------|--------|---------|
| dyp (cm) | dyp (cm)    | Alder | innhold (%) | (%)  | (ppm) | (ppm)  | (ppm)   |
| 0-1      | 0.5         | 2009  | 89.63       | 3.07 | 227   | 55     | 1.37    |
| 1-2      | 1.5         | 2008  | 79.93       | 4.21 | 293   | 87     | 1.78    |
| 2-3      | 2.5         | 2000  | 82.66       | 3.98 | 289   | 104    | 1.95    |
| 3-4      | 3.5         | 1996  | 84.55       | 3.99 | 289   | 100    | 2.00    |
| 4-5      | 4.5         | 1992  | 83.78       | 4.40 | 594   | 133    | 2.38    |
| 5-6      | 5.5         | 1986  | 79.38       | 5.38 | 746   | 203    | 2.87    |
| 6-7      | 6.5         | 1982  | 80.14       | 6.05 | 1135  | 300    | 3.65    |
| 7-8      | 7.5         |       | 78.98       | 5.50 | 1081  | 276    | 3.67    |
| 8-9      | 8.5         | 1975  | 77.01       | 4.04 | 890   | 211    | 3.29    |
| 9-10     | 9.5         | 1972  | 72.24       | 3.56 | 718   | 129    | 2.46    |
| 10-11    | 10.5        | 1969  | 68.08       |      |       |        |         |
| 11-12    | 11.5        |       | 64.71       | 3.00 | 301   | 81     | 1.54    |
| 12-13    | 12.5        | 1964  | 63.79       |      |       |        |         |
| 13-14    | 13.5        |       | 63.55       | 2.79 | 281   | 75     | 1.16    |
| 14-15    | 14.5        | 1959  | 63.23       |      |       |        |         |
| 15-16    | 15.5        |       | 61.95       | 2.79 | 264   | 62     | 1.04    |
| 16-17    | 16.5        | 1952  | 60.32       |      |       |        |         |
| 17-18    | 17.5        |       | 59.49       | 2.81 | 280   | 57     | 1.31    |
| 18-19    | 18.5        | 1943  | 59.91       |      |       |        |         |
| 19-20    | 19.5        |       | 59.41       | 2.65 | 290   | 55     | 1.19    |
| 20-22    | 21.0        | 1935  | 58.18       |      |       |        |         |
| 22-24    | 23.0        |       | 57.77       | 1.96 | 212   | 33     | 0.79    |
| 24-26    | 25.0        | 1925  | 57.74       |      |       |        |         |
| 26-28    | 27.0        |       | 57.34       | 1.71 | 194   | 30     | 0.80    |
| 28-30    | 29.0        | 1908  | 57.19       |      |       |        |         |
| 30-32    | 31.0        | 1897  | 57.22       | 1.67 | 188   | 29     | 0.78    |
| 32-34    | 33.0        |       | 56.25       |      |       |        |         |
| 34-36    | 35.0        | 1870  | 55.83       |      |       |        |         |
| 36-38    | 37.0        |       | 54.67       | 1.62 | 186   | 28     | 0.80    |

# Kjerne: EA1

| Kjerne-  | Gjennomsnitts- | Vann-       | TOC  |
|----------|----------------|-------------|------|
| dyp (cm) | dyp (cm)       | innhold (%) | (%)  |
| 0-1      | 0.5            | 72.653      | 3.27 |
| 1-2      | 1.5            | 66.899      | 3.07 |
| 2-3      | 2.5            | 63.994      | 2.92 |
| 3-4      | 3.5            | 64.052      | 3.02 |
| 4-5      | 4.5            | 61.533      | 2.65 |
| 5-6      | 5.5            | 56.427      | 1.98 |
| 6-7      | 6.5            | 53.812      | 1.34 |
| 7-8      | 7.5            | 52.161      | 1.56 |
| 8-9      | 8.5            | 50.121      | 1.20 |
| 9-10     | 9.5            | 48.865      | 1.16 |
| 10-11    | 10.5           | 48.866      |      |
| 11-12    | 11.5           | 49.200      | 1.21 |
| 12-13    | 12.5           | 49.695      |      |
| 13-14    | 13.5           | 50.341      | 1.20 |
| 14-15    | 14.5           | 50.565      |      |
| 15-16    | 15.5           | 51.295      | 1.24 |
| 16-17    | 16.5           | 51.800      |      |
| 17-18    | 17.5           | 51.101      | 1.28 |
| 18-19    | 18.5           | 50.863      |      |
| 19-20    | 19.5           | 50.648      | 1.09 |
| 20-22    | 21.0           | 48.516      |      |
| 22-24    | 23.0           | 44.804      | 0.83 |
| 24-26    | 25.0           | 45.317      |      |
| 26-28    | 27.0           | 44.450      | 0.80 |
| 28-30    | 29.0           | 43.879      |      |
| 30-32    | 31.0           | 37.758      |      |
| 32-33    | 32.5           | 33.892      | 0.52 |
## Kjerne: FL1-1 (=AG1)

| Kjerne-  | Gjennomsnitts- |       | Vann-       | TOC  |
|----------|----------------|-------|-------------|------|
| dyp (cm) | dyp (cm)       | Alder | innhold (%) | (%)  |
| 0-1      | 0.5            | 2009  | 76.162      | 3.27 |
| 1-2      | 1.5            | 2008  | 70.718      | 2.89 |
| 2-3      | 2.5            | 2008  | 68.951      | 3.02 |
| 3-4      | 3.5            |       | 68.176      | 3.97 |
| 4-5      | 4.5            | 2007  | 68.106      | 3.22 |
| 5-6      | 5.5            | 2006  | 68.841      | 2.90 |
| 6-7      | 6.5            |       | 68.786      | 2.90 |
| 7-8      | 7.5            |       | 68.117      | 2.97 |
| 8-9      | 8.5            | 2003  | 68.116      | 3.63 |
| 9-10     | 9.5            |       | 68.071      | 3.06 |
| 10-11    | 10.5           | 2002  | 65.162      | 3.25 |
| 11-12    | 11.5           |       | 64.413      | 3.18 |
| 12-13    | 12.5           |       | 63.929      |      |
| 13-14    | 13.5           |       | 63.567      | 3.09 |
| 14-15    | 14.5           |       | 63.347      |      |
| 15-16    | 15.5           | 1998  | 62.967      | 3.07 |
| 16-17    | 16.5           |       | 63.992      |      |
| 17-18    | 17.5           | 1996  | 62.900      | 3.17 |
| 18-19    | 18.5           |       | 62.215      |      |
| 19-20    | 19.5           | 1994  | 61.908      | 3.45 |
| 20-22    | 21.0           |       | 61.507      |      |
| 22-24    | 23.0           | 1991  | 61.772      | 5.50 |
| 24-26    | 25.0           | 1989  | 62.788      |      |
| 26-28    | 27.0           | 1987  | 59.496      |      |
| 28-30    | 29.0           |       | 59.624      | 1.74 |

### Kjerne: Dk2-1

| Kjerne-  | Gjennomsnitts- | Vann-       |
|----------|----------------|-------------|
| dyp (cm) | dyp (cm)       | innhold (%) |
| 0-1      | 0.5            | 71.203      |
| 1-2      | 1.5            | 68.406      |
| 2-3      | 2.5            | 66.007      |
| 3-4      | 3.5            | 67.487      |
| 4-5      | 4.5            | 70.184      |
| 5-6      | 5.5            | 72.966      |
| 6-7      | 6.5            | 71.351      |
| 7-8      | 7.5            | 68.163      |
| 8-9      | 8.5            | 66.363      |
| 9-10     | 9.5            | 65.132      |
| 10-11    | 10.5           | 64.159      |
| 11-12    | 11.5           | 63.049      |
| 12-13    | 12.5           | 62.522      |
| 13-14    | 13.5           | 62.908      |
| 14-15    | 14.5           | 62.708      |
| 15-16    | 15.5           | 61.539      |
| 16-17    | 16.5           | 61.620      |
| 17-18    | 17.5           | 60.505      |
| 18-19    | 18.5           | 60.794      |
| 19-20    | 19.5           | 61.120      |
| 20-22    | 21.0           | 61.147      |
| 22-24    | 23.0           | 62.087      |
| 24-26    | 25.0           | 60.618      |
| 26-28    | 27.0           | 57.684      |
| 28-30    | 29.0           | 57.578      |
| 30-32    | 31.0           | 57.982      |

### Kjerne: DM2-1

| Kjerne-  | Gjennomsnitts- | Vann-       | TOC  |
|----------|----------------|-------------|------|
| dyp (cm) | dyp (cm)       | innhold (%) | (%)  |
| 0-1      | 0.5            | 91.838      | 2.56 |
| 1-2      | 1.5            | 89.759      |      |
| 2-3      | 2.5            | 82.612      | 4.00 |
| 3-4      | 3.5            | 82.802      | 3.65 |
| 4-5      | 4.5            | 83.132      |      |
| 5-6      | 5.5            | 81.493      | 4.01 |
| 6-7      | 6.5            | 82.032      |      |
| 7-8      | 7.5            | 81.259      | 4.52 |
| 8-9      | 8.5            | 82.177      |      |
| 9-10     | 9.5            | 81.907      | 4.65 |
| 10-11    | 10.5           | 76.801      | 3.63 |
| 11-12    | 11.5           | 76.898      |      |
| 12-13    | 12.5           | 75.223      | 3.19 |
| 13-14    | 13.5           | 78.042      |      |
| 14-15    | 14.5           | 78.276      | 3.86 |
| 15-16    | 15.5           | 79.849      | 4.08 |
| 16-17    | 16.5           | 76.023      | 3.58 |
| 17-18    | 17.5           | 73.977      | 3.53 |
| 18-19    | 18.5           | 74.630      |      |
| 19-20    | 19.5           | 74.579      | 3.31 |
| 20-22    | 21.0           | 69.440      |      |
| 22-24    | 23.0           | 67.314      | 2.70 |
| 24-26    | 25.0           | 64.137      |      |
| 26-28    | 27.0           | 63.213      | 2.38 |
| 28-30    | 29.0           | 61.014      |      |
| 30-32    | 31.0           | 60.532      | 1.76 |
| 32-34    | 33.0           | 60.694      |      |
| 34-36    | 35.0           | 60.418      | 1.69 |
| 36-38    | 37.0           | 60.836      |      |
| 38-40    | 39.0           | 60.731      | 1.66 |
| 40-42    | 41.0           | 60.292      |      |
| 42-44    | 43.0           | 60.464      |      |
| 44-46    | 45.0           | 60.392      | 1.58 |

## Kjerne: Cj3-1

| Kjerne-  | Gjennomsnitts- |       | Vann-       | TOC  |
|----------|----------------|-------|-------------|------|
| dyp (cm) | dyp (cm)       | Alder | innhold (%) | (%)  |
| 0-1      | 0.5            | 2008  | 73.616      | 2.97 |
| 1-2      | 1.5            | 2004  | 67.634      | 3.24 |
| 2-3      | 2.5            | 1999  | 66.408      | 3.14 |
| 3-4      | 3.5            |       | 64.226      | 3.29 |
| 4-5      | 4.5            | 1991  | 63.717      | 3.45 |
| 5-6      | 5.5            | 1987  | 63.409      | 3.40 |
| 6-7      | 6.5            | 1981  | 63.106      | 3.43 |
| 7-8      | 7.5            | 1976  | 62.988      | 3.40 |
| 8-9      | 8.5            | 1971  | 61.213      | 3.29 |
| 9-10     | 9.5            |       | 60.081      | 3.04 |
| 10-11    | 10.5           | 1964  | 59.733      |      |
| 11-12    | 11.5           |       | 59.241      | 2.79 |
| 12-13    | 12.5           | 1957  | 59.409      |      |
| 13-14    | 13.5           |       | 59.536      | 2.57 |
| 14-15    | 14.5           | 1947  | 58.715      |      |
| 15-16    | 15.5           |       | 57.161      | 2.18 |
| 16-17    | 16.5           | 1937  | 56.871      |      |
| 17-18    | 17.5           |       | 56.498      | 1.98 |
| 18-19    | 18.5           | 1928  | 55.814      |      |
| 19-20    | 19.5           |       | 55.740      | 1.85 |
| 20-22    | 21.0           | 1913  | 53.644      |      |
| 22-24    | 23.0           | 1902  | 52.261      | 1.86 |

### Kjerne: BO2-1

| Kjerne-  | Gj.snitts- |        | Vann-       | TOC  | Sink  | Kobber | Kadmium |
|----------|------------|--------|-------------|------|-------|--------|---------|
| dyp (cm) | dyp (cm)   | Alder  | innhold (%) | (%)  | (ppm) | (ppm)  | (ppm)   |
| 0-1      | 0.5        | 2005   | 71.263      | 3.57 | 236   | 128    | 1.16    |
| 1-2      | 1.5        | 2001   | 65.270      | 3.68 | 258   | 156    | 1.35    |
| 2-3      | 2.5        | 1994   | 58.438      | 3.33 | 259   | 143    | 1.37    |
| 3-4      | 3.5        | 1984   | 58.491      | 3.38 | 253   | 142    | 1.56    |
| 4-5      | 4.5        | 1972   | 59.925      | 3.57 | 280   | 157    | 1.79    |
| 5-6      | 5.5        | 1956   | 58.213      | 3.46 | 286   | 153    | 1.76    |
| 6-7      | 6.5        | 1934   | 57.328      | 3.19 | 273   | 133    | 1.74    |
| 7-8      | 7.5        | 1907   | 51.651      | 2.18 | 227   | 82     | 1.56    |
| 8-9      | 8.5        |        | 56.364      | 2.73 | 294   | 126    | 1.88    |
| 9-10     | 9.5        |        | 57.239      | 3.14 | 307   | 137    | 1.96    |
| 10-11    | 10.5       |        | 56.363      |      |       |        |         |
| 11-12    | 11.5       | (1800) | 56.722      | 2.45 | 254   | 65     | 1.17    |
| 12-13    | 12.5       |        | 56.419      |      |       |        |         |
| 13-14    | 13.5       |        | 55.327      | 2.12 | 216   | 40     | 0.98    |
| 14-15    | 14.5       |        | 55.199      |      |       |        |         |
| 15-16    | 15.5       | (1700) | 54.973      | 1.98 | 208   | 37     | 0.98    |
| 16-17    | 16.5       |        | 54.433      |      |       |        |         |
| 17-18    | 17.5       |        | 54.621      | 1.86 | 195   | 31     | 0.77    |
| 18-19    | 18.5       |        | 54.799      |      |       |        |         |
| 19-20    | 19.5       |        | 53.778      | 1.74 | 190   | 30     | 0.79    |
| 20-22    | 21.0       |        | 53.078      |      |       |        |         |
| 22-24    | 23.0       |        | 53.451      |      |       |        |         |
| 24-25    | 24.5       |        | 53.298      | 1.54 | 164   | 25     | 0.80    |

## Kjerne: Im4x

| Kjerne-  | Gj.snitts- |       | Vann-       | TOC  | Sink  | Kobber | Kadmium |
|----------|------------|-------|-------------|------|-------|--------|---------|
| dyp (cm) | dyp (cm)   | Alder | innhold (%) | (%)  | (ppm) | (ppm)  | (ppm)   |
| 0-1      | 0.5        | 2009  | 78.448      | 2.23 | 195   | 35     | 0.79    |
| 1-2      | 1.5        |       | 73.977      | 2.35 | 196   | 38     | 0.79    |
| 2-3      | 2.5        | 2006  | 72.685      | 2.42 | 206   | 38     | 0.80    |
| 3-4      | 3.5        |       | 71.433      | 2.35 | 206   | 38     | 0.80    |
| 4-5      | 4.5        | 2004  | 69.294      | 2.38 | 208   | 38     | 0.80    |
| 5-6      | 5.5        |       | 67.958      | 2.35 | 210   | 38     | 0.80    |
| 6-7      | 6.5        | 2000  | 66.825      | 2.43 | 212   | 40     | 0.79    |
| 7-8      | 7.5        |       | 66.561      | 2.34 | 215   | 40     | 0.60    |
| 8-9      | 8.5        | 1997  | 66.115      | 2.42 | 217   | 39     | 0.80    |
| 9-10     | 9.5        |       | 65.445      | 2.39 | 218   | 40     | 0.80    |
| 10-11    | 10.5       | 1993  | 64.703      |      |       |        |         |
| 11-12    | 11.5       |       | 63.064      | 2.53 | 228   | 43     | 0.80    |
| 12-13    | 12.5       | 1988  | 63.216      |      |       |        |         |
| 13-14    | 13.5       |       | 62.412      | 2.60 | 233   | 45     | 0.76    |
| 14-15    | 14.5       | 1982  | 61.524      |      |       |        |         |
| 15-16    | 15.5       |       | 61.124      | 2.70 | 250   | 50     | 0.80    |
| 16-17    | 16.5       | 1975  | 61.401      |      |       |        |         |
| 17-18    | 17.5       |       | 60.938      | 2.74 | 250   | 48     | 0.80    |
| 18-19    | 18.5       | 1969  | 60.902      |      |       |        |         |
| 19-20    | 19.5       |       | 60.854      | 2.63 | 251   | 49     | 0.80    |
| 20-22    | 21.0       | 1962  | 59.921      |      | 244   | 45     | 0.80    |
| 22-24    | 23.0       | 1954  | 58.669      | 2.44 | 227   | 39     | 0.80    |
| 24-26    | 25.0       | 1947  | 58.522      |      | 224   | 38     | 0.79    |
| 26-28    | 27.0       |       | 56.486      | 2.16 | 213   | 34     | 0.60    |
| 28-30    | 29.0       | 1933  | 53.938      |      | 186   | 32     | 0.59    |
| 30-32    | 31.0       | 1924  | 50.532      | 1.55 | 162   | 28     | 0.58    |
| 32-34    | 33.0       | 1915  | 50.775      | 1.62 | 164   | 28     | 0.60    |

Copenhagen, 20 November 2009

Thorbjørn J. Andersen Department of Geography and geology University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@geo.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

## **Dating of core EP1**

#### **Dating of core EP1**

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra low-background Ge-welldetector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

A rather abrupt increase in density was observed from about 22 cm and downwards. This could indicate a major change in deposition-rate and/or a hiatus. The core showed surface contents of unsupported <sup>210</sup>Pb of about 26Bq kg<sup>-1</sup> which decreased fairly monotonically downcore. The calculated flux of unsupported <sup>210</sup>Pb is 137 Bq m<sup>-2</sup> y<sup>-1</sup>. This is about twice the estimated local atmospheric supply (based on data shown in Appleby, 2001) and shows that the site is subject to some degree of sediment focusing.

 $^{137}$ Cs was measured in the upper part of the core and showed minor peaks around 7.5 and 19 cm depth.

CRS-modeling (Appleby, 2001) has been applied on the profile using a modified method where the activity below the level of the lowermost sample (19.5 cm) in the upper low-density part of the core is calculated on the basis of the regression line shown in plot in fig 2. The result is given in table 2 and fig 3 and 4.

Based on the <sup>210</sup>Pb-dating, the two peaks in <sup>137</sup>Cs-peak are dated to around 1989 and 1965 which is in good agreement with the expected Chernobyl and nuclear weapons testing origin (maxima in 1986 and 1963 respectively). The chronology is therefore considered to be reliable. Due to the marked change in density it is difficult to come up with a reliable chronology below 22 cm depth.

20 November 2009

Thorbjørn J Andersen

#### Reference:

Table 1. Core EP1

| Depth | Pb-<br>210tot | error Pb-<br>210 tot | Pb-210<br>supupp<br>210Pb | error pb-<br>210 sup | Pb-210<br>unsup | error pb-<br>210<br>unsup | Cs-137  | error Cs-<br>137 |
|-------|---------------|----------------------|---------------------------|----------------------|-----------------|---------------------------|---------|------------------|
| cm    | Bq kg-1       | Bq kg-1              | Bq kg-1                   | Bq kg-1              | Bq kg-1         | Bq kg-1                   | Bq kg-1 | Bq kg-1          |
|       |               |                      |                           |                      |                 |                           |         |                  |
| 3.5   | 372           | 44                   | 109                       | 3                    | 263             | 44                        | 30      | 6                |
| 5.5   | 266           | 36                   | 51                        | 3                    | 216             | 36                        | 36      | 5                |
| 7.5   | 215           | 24                   | 97                        | 1                    | 118             | 24                        | 99      | 7                |
| 9.5   | 215           | 27                   | 73                        | 12                   | 142             | 29                        | 36      | 5                |
| 11.5  | 206           | 25                   | 80                        | 8                    | 126             | 26                        | 15      | 4                |
| 13.5  | 163           | 21                   | 76                        | 5                    | 87              | 22                        | 16      | 4                |
| 15.5  | 156           | 18                   | 101                       | 2                    | 55              | 19                        | 8       | 3                |
| 17.5  | 180           | 22                   | 79                        | 12                   | 101             | 25                        | 20      | 4                |
| 19.5  | 174           | 21                   | 84                        | 8                    | 90              | 22                        | 16      | 3                |
| 21.0  | 154           | 17                   | 105                       | 6                    | 49              | 18                        | 3       | 2                |
| 25.0  | 151           | 15                   | 100                       | 2                    | 51              | 15                        | 2       | 2                |
| 31.0  | 105           | 13                   | 82                        | 1                    | 23              | 13                        | 0       | 0                |
| 35.0  | 145           | 18                   | 83                        | 5                    | 63              | 19                        | 3       | 2                |
| 41.0  | 147           | 17                   | 82                        | 4                    | 64              | 18                        | 0       | 0                |
| 49.0  | 127           | 15                   | 95                        | 1                    | 33              | 15                        | 0       | 0                |
| 60.5  | 86            | 12                   | 84                        | 0                    | 2               | 12                        | 0       | 0                |

| Depth | Age | error age | Date | acc rate     | error rate   |
|-------|-----|-----------|------|--------------|--------------|
| cm    | у   | у         | у    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |           |      |              |              |
| 0.0   |     |           | 2009 |              |              |
| 3.5   | 9   | 3         | 2000 | 0.45         | 0.08         |
| 5.5   | 15  | 3         | 1994 | 0.39         | 0.07         |
| 7.5   | 20  | 3         | 1989 | 0.47         | 0.10         |
| 9.5   | 25  | 3         | 1984 | 0.52         | 0.11         |
| 11.5  | 29  | 4         | 1980 | 0.44         | 0.10         |
| 13.5  | 33  | 4         | 1976 | 0.49         | 0.13         |
| 15.5  | 37  | 4         | 1972 | 0.65         | 0.22         |
| 17.5  | 41  | 4         | 1968 | 0.52         | 0.13         |
| 19.5  | 48  | 5         | 1961 | 0.36         | 0.10         |
| 21.0  | 53  | 5         | 1956 | 0.41         | 0.13         |
| 25.0  | 73  | 9         | 1936 | 0.39         | 0.11         |

Table 2, Core EP1













Figur 4

Copenhagen, 17 February 2010

Thorbjørn J. Andersen Department of Geography and geology University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@geo.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

## **Revised Dating of core CP31**

#### **Revised Dating of core CP31**

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

The core showed surface contents of unsupported <sup>210</sup>Pb of about 160 Bq kg<sup>-1</sup> but higher activities were found at a depth of around 4 cm. The calculated flux of unsupported <sup>210</sup>Pb is 95 Bq m<sup>-2</sup> y<sup>-1</sup> which is similar to the estimated local atmospheric supply (based on data shown in Appleby, 2001).

<sup>137</sup>Cs was measured in the upper part of the core and showed a peak around 4.5 cm

CRS-modeling (Appleby, 2001) has been applied on the profile using a modified method where the peak in <sup>137</sup>Cs has been set to 1986, the year for the Chernobyl.-accident. The activity in the bottom of the core has been calculated using to different assumptions, fig2a and fig 2b. In 2a the activity below 19 cm is assumed to be caused by sediment mixing whereas in 2b the activities below 19 cm are assumed to be real, not caused by mixing. The results of the two models are given in table 2a and 2b and fig 3 and 4.

The plot in fig 5 which shows a scatter-plot of unsupported <sup>210</sup>Pb vs. <sup>137</sup>Cs indicates that mixing is likely to be responsible for a significant part of the profile. Therefore the assumption made in fig 2a is considered to be the most realistic and the chronology based on this assumption (table 2a) should be preferred unless other data indicates that 2b is the more realistic.

17 February 2010

Thorbjørn J Andersen

#### Reference:

| Tabl | le 1. | Core | <b>CP31</b> |
|------|-------|------|-------------|
|      |       |      |             |

| Depth | Pb-     | error Pb- | Pb-210  | error pb- | Pb-210  | error pb- | Cs-137  | error Cs- |
|-------|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
|       | 210tot  | 210 tot   | sup     | 210 sup   | unsup   | 210       |         | 137       |
|       |         |           |         |           |         | unsup     |         |           |
| cm    | Bq kg-1 | Bq kg-1   |
|       |         |           |         |           |         |           |         |           |
| 0.5   | 215     | 19        | 47      | 39        | 168     | 59        | 0       | 0         |
| 1.5   | 213     | 18        | 50      | 27        | 163     | 44        | 28      | 4         |
| 2.5   | 239     | 17        | 37      | 1         | 202     | 18        | 38      | 3         |
| 3.5   | 296     | 21        | 40      | 2         | 256     | 23        | 60      | 3         |
| 4.5   | 282     | 20        | 39      | 1         | 243     | 21        | 72      | 3         |
| 5.5   | 200     | 15        | 37      | 3         | 163     | 18        | 43      | 3         |
| 6.5   | 134     | 10        | 34      | 1         | 100     | 11        | 27      | 2         |
| 7.5   | 105     | 9         | 31      | 5         | 74      | 14        | 22      | 3         |
| 8.5   | 105     | 9         | 36      | 1         | 69      | 10        | 18      | 2         |
| 9.5   | 115     | 10        | 33      | 1         | 83      | 11        | 13      | 2         |
| 10.5  | 69      | 6         | 40      | 5         | 29      | 11        | 11      | 2         |
| 11.5  | 77      | 7         | 33      | 8         | 44      | 15        | 9       | 2         |
| 12.5  | 50      | 5         | 35      | 1         | 15      | 6         | 9       | 2         |
| 15.5  | 68      | 6         | 39      | 2         | 29      | 9         | 4       | 2         |
| 18.5  | 53      | 5         | 40      | 2         | 13      | 8         | 3       | 2         |
| 21.0  | 66      | 6         | 37      | 1         | 29      | 7         | 5       | 2         |
| 25.0  | 64      | 6         | 42      | 2         | 22      | 8         | 3       | 2         |
| 29.0  | 72      | 6         | 47      | 3         | 25      | 9         | 0       | 0         |
| 31.0  | 73      | 7         | 46      | 9         | 27      | 16        | 0       | 0         |
| 35.0  | 44      | 4         | 46      | 2         | 1       | 7         | 3       | 2         |

Table 2a, Core CP31

| Depth | Age | error age | Date | acc rate     | error rate   |
|-------|-----|-----------|------|--------------|--------------|
| cm    | У   | У         | У    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |           |      |              |              |
| 0     |     |           | 2009 |              |              |
| 0.5   | 1   | 1         | 2008 | 0.5          | 0.2          |
| 1.5   | 2   | 1         | 2007 | 0.5          | 0.1          |
| 2.5   | 5   | 1         | 2004 | 0.4          | 0.0          |
| 3.5   | 12  | 1         | 1997 | 0.3          | 0.0          |
| 4.5   | 23  | 1         | 1986 | 0.2          | 0.0          |
| 5.5   | 29  | 3         | 1980 | 0.4          | 0.1          |
| 6.5   | 34  | 3         | 1975 | 0.5          | 0.1          |
| 7.5   | 38  | 3         | 1971 | 0.7          | 0.1          |
| 8.5   | 43  | 4         | 1966 | 0.7          | 0.1          |
| 9.5   | 50  | 4         | 1959 | 0.6          | 0.1          |
| 10.5  | 56  | 5         | 1953 | 0.6          | 0.3          |
| 11.5  | 60  | 6         | 1949 | 0.8          | 0.3          |
| 12.5  | 65  | 6         | 1944 | 0.9          | 0.4          |
| 15.5  | 79  | 10        | 1930 | 0.9          | 0.3          |
| 18.5  | 109 | 17        | 1900 | 0.5          | 0.3          |

Note: chronology is only indicative in the bottom of the core due to sediment mixing.

#### Table 2b, Core CP31

| Depth | Age | error age | Date | acc rate     | error rate   |
|-------|-----|-----------|------|--------------|--------------|
| cm    | У   | У         | У    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |           |      |              |              |
| 0     |     |           | 2009 |              |              |
| 0.5   | 1   | 1         | 2008 | 0.5          | 0.2          |
| 1.5   | 2   | 1         | 2007 | 0.5          | 0.1          |
| 2.5   | 5   | 1         | 2004 | 0.4          | 0.0          |
| 3.5   | 12  | 1         | 1997 | 0.3          | 0.0          |
| 4.5   | 23  | 1         | 1986 | 0.2          | 0.0          |
| 5.5   | 26  | 3         | 1983 | 0.7          | 0.1          |
| 6.5   | 29  | 3         | 1980 | 1.0          | 0.1          |
| 7.5   | 31  | 3         | 1978 | 1.4          | 0.3          |
| 8.5   | 33  | 3         | 1976 | 1.6          | 0.3          |
| 9.5   | 36  | 4         | 1973 | 1.4          | 0.2          |
| 10.5  | 39  | 4         | 1970 | 1.7          | 0.7          |
| 11.5  | 40  | 4         | 1969 | 2.5          | 0.9          |
| 12.5  | 41  | 4         | 1968 | 2.9          | 1.3          |
| 15.5  | 45  | 5         | 1964 | 3.7          | 1.2          |
| 18.5  | 49  | 5         | 1960 | 3.4          | 1.9          |
| 21.0  | 54  | 6         | 1955 | 3.0          | 0.8          |
| 25.0  | 65  | 8         | 1944 | 1.9          | 0.7          |
| 29.0  | 81  | 11        | 1928 | 1.4          | 0.7          |
| 31.0  | 94  | 13        | 1915 | 0.8          | 0.5          |
| 35.0  | 122 | 20        | 1887 | 0.8          | 0.5          |

Note: chronology is only indicative in the bottom of the core due to sediment mixing. Ages are minimum-ages.



Fig 1







Fig 2b





Figur 4 Black curve: estimated chronology. Red: alternative chronology





Copenhagen, 5 May 2010

Thorbjørn J. Andersen Department of Geography and geology University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@geo.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

## **Dating of core AA4 = Bunn18x**

#### Dating of core AA4, Bunn18x

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Department of Geography and Geology, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

A rather abrupt increase in density was observed from about 10 cm and downwards. This could indicate a major change in deposition-rate and/or a hiatus. The core showed surface contents of unsupported <sup>210</sup>Pb of about 240 Bq kg<sup>-1</sup> which decreased non-monotonically with depth.

The calculated flux of unsupported <sup> $^{210}$ </sup>Pb is around 125 Bq m<sup> $^{-2}$ </sup> y<sup> $^{-1}$ </sup>. This is about 50 % higher than the estimated local atmospheric supply (based on data shown in Appleby, 2001) and shows that the site is subject to some degree of sediment focusing.

<sup>137</sup>Cs was measured in the upper part of the core and showed a distinct peak at a depth of 5.5 cm. This peak is without doubt related to the Chernobyl accident in 1986 and has been used as a chronostratigrapic marker in the following CRS-modelling. The CRS-modeling (Appleby, 2001) has been applied on the profile using a modified method where the activity below the level of the lowermost sample is calculated on the basis of the regression line shown in plot in fig 2. The level 5.5 cm has been set to 1986. The result is given in fig 3 and 4. Allowing for some degree of mixing the lower part of the <sup>137</sup>Cs profile agrees reasonably well with the known history of release of this isotope into nature and the chronology is therefore considered to be fairly accurate.

5 May, 2010

Thorbjørn J Andersen

#### Reference:

Table 1. Core AA4

| Depth | Pb-<br>210tot | error Pb-<br>210 tot | Pb-210<br>sup | error pb-<br>210 sup | Pb-210<br>unsup | error pb-<br>210 | Cs-137  | error Cs-<br>137 |
|-------|---------------|----------------------|---------------|----------------------|-----------------|------------------|---------|------------------|
| cm    | Bq kg-1       | Bq kg-1              | Bq kg-1       | Bq kg-1              | Bq kg-1         | unsup<br>Bq kg-1 | Bq kg-1 | Bq kg-1          |
|       |               |                      |               |                      |                 |                  |         |                  |
| 0.5   | 267           | 21                   | 32            | 2                    | 235             | 21               | 13      | 4                |
| 2.5   | 274           | 22                   | 30            | 1                    | 244             | 22               | 22      | 4                |
| 3.5   | 230           | 19                   | 19            | 6                    | 211             | 20               | 22      | 4                |
| 4.5   | 210           | 18                   | 20            | 8                    | 190             | 20               | 69      | 5                |
| 5.5   | 250           | 19                   | 30            | 8                    | 220             | 21               | 120     | 5                |
| 6.5   | 197           | 15                   | 38            | 2                    | 160             | 15               | 41      | 3                |
| 8.5   | 118           | 9                    | 29            | 1                    | 89              | 9                | 13      | 2                |
| 9.5   | 82            | 7                    | 31            | 1                    | 51              | 7                | 0       | 0                |
| 10.5  | 60            | 5                    | 30            | 1                    | 30              | 5                | 9       | 1                |
| 12.5  | 65            | 6                    | 33            | 3                    | 32              | 7                | 6       | 2                |
| 14.5  | 56            | 5                    | 31            | 3                    | 25              | 6                | 5       | 1                |
| 16.5  | 61            | 5                    | 33            | 1                    | 28              | 6                | 7       | 1                |
| 18.5  | 56            | 4                    | 35            | 3                    | 21              | 5                | 5       | 1                |
| 21.0  | 36            | 4                    | 32            | 2                    | 4               | 4                | 0       | 0                |
| 25.0  | 44            | 4                    | 34            | 3                    | 10              | 5                | 0       | 0                |
| 29.0  | 47            | 4                    | 41            | 1                    | 7               | 4                | 0       | 0                |
| 31.0  | 43            | 4                    | 36            | 3                    | 7               | 5                | 0       | 0                |
| 35.0  | 41            | 4                    | 39            | 0                    | 2               | 4                | 0       | 0                |

Table 2, Core AA4

| Depth | Age | error age | Date | acc rate     | error rate   |
|-------|-----|-----------|------|--------------|--------------|
| cm    | У   | У         | у    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |           |      |              |              |
| 0     |     |           | 2009 |              |              |
| 0.5   | 1   | 1         | 2008 | 0.43         | 0.04         |
| 2.5   | 9   | 2         | 2000 | 0.37         | 0.04         |
| 3.5   | 13  | 2         | 1996 | 0.32         | 0.03         |
| 4.5   | 17  | 2         | 1992 | 0.32         | 0.04         |
| 5.5   | 23  | 2         | 1986 | 0.27         | 0.03         |
| 6.5   | 27  | 3         | 1982 | 0.43         | 0.04         |
| 8.5   | 34  | 3         | 1975 | 0.55         | 0.08         |
| 9.5   | 37  | 3         | 1972 | 0.83         | 0.15         |
| 10.5  | 40  | 4         | 1969 | 1.32         | 0.27         |
| 12.5  | 45  | 4         | 1964 | 1.53         | 0.46         |
| 14.5  | 50  | 5         | 1959 | 1.42         | 2.99         |
| 16.5  | 57  | 6         | 1952 | 1.26         | 0.33         |
| 18.5  | 66  | 7         | 1943 | 1.06         | 0.36         |
| 21.0  | 74  | 9         | 1935 | 1.55         | 1.37         |
| 25.0  | 84  | 12        | 1925 | 2.07         | 1.14         |
| 29.0  | 101 | 17        | 1908 | 1.18         | 0.91         |
| 31.0  | 112 | 17        | 1897 | 0.92         | 0.66         |
| 35.0  | 139 | 34        | 1870 | 0.79         | 0.84         |







Fig 2









Vedlegg 2.4

# Gamma Dating Center Copenhagen

Copenhagen, 23 November 2009

Thorbjørn J. Andersen Department of Geography and geology University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@geo.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

## **Dating of core AG1 = FI1-1**

#### **Dating of core AG1**

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

The core showed surface contents of unsupported <sup>210</sup>Pb of about 150Bq kg<sup>-1</sup> and only a very weak tendency for exponential decrease with depth. The activity changes rapidly in the interval 25 to 29 cm. The calculated flux of unsupported <sup>210</sup>Pb is very high, around 900 Bq m<sup>-2</sup> y<sup>-1</sup>. This is about ten times larger the estimated local atmospheric supply (based on data shown in Appleby, 2001) which show that the site could is subject to intense sediment focusing.

<sup>137</sup>Cs was measured in the entire core with the highest level reached around 24 cm.

CRS-modeling (Appleby, 2001) has been applied on the profile using a modified method where the activity below 27 cm is calculated on the basis of the regression line shown in plot in fig 2. The result is given in table 2 and fig 3 and 4.

Based on the <sup>210</sup>Pb-dating, the peak in <sup>137</sup>Cs-peak is dated to around 1990 which clearly indicate that it is related to the Chernobyl-accident in 1986. Due to the abrupt change in activity of unsupported <sup>210</sup>Pb it is not possible to calculate a chronology below 27 cm but it is most likely that 29 cm is at least 100 years old.

23 November 2009

Thorbjørn J Andersen

#### Reference:

Table 1. Core AG1

| Depth | Pb-<br>210tot | error Pb-<br>210 tot | Pb-210<br>supupp<br>210Pb | error pb-<br>210 sup | Pb-210<br>unsup | error pb-<br>210<br>unsup | Cs-137  | error Cs-<br>137 |
|-------|---------------|----------------------|---------------------------|----------------------|-----------------|---------------------------|---------|------------------|
| cm    | Bq kg-1       | Bq kg-1              | Bq kg-1                   | Bq kg-1              | Bq kg-1         | Bq kg-1                   | Bq kg-1 | Bq kg-1          |
|       |               |                      |                           |                      |                 |                           |         |                  |
| 0.5   | 191           | 16                   | 43                        | 2                    | 148             | 16                        | 21      | 2                |
| 1.5   | 184           | 14                   | 35                        | 3                    | 150             | 15                        | 20      | 2                |
| 2.5   | 173           | 16                   | 42                        | 3                    | 131             | 16                        | 19      | 2                |
| 4.5   | 194           | 20                   | 42                        | 3                    | 152             | 20                        | 15      | 3                |
| 5.5   | 196           | 16                   | 44                        | 1                    | 152             | 16                        | 23      | 2                |
| 8.5   | 237           | 19                   | 43                        | 0                    | 194             | 19                        | 22      | 3                |
| 10.5  | 155           | 10                   | 36                        | 2                    | 119             | 11                        | 22      | 2                |
| 15.5  | 184           | 16                   | 41                        | 3                    | 143             | 16                        | 25      | 3                |
| 17.5  | 157           | 14                   | 46                        | 4                    | 111             | 15                        | 25      | 2                |
| 19.5  | 138           | 14                   | 41                        | 3                    | 96              | 14                        | 29      | 3                |
| 23.0  | 152           | 14                   | 46                        | 2                    | 106             | 14                        | 31      | 3                |
| 25.0  | 151           | 9                    | 40                        | 2                    | 110             | 9                         | 30      | 2                |
| 27.0  | 94            | 11                   | 35                        | 3                    | 59              | 12                        | 24      | 2                |
| 29.0  | 49            | 7                    | 47                        | 1                    | 2               | 7                         | 4       | 2                |

#### Table 2, Core AG1

| Depth | Age | error age | Date | acc rate     | error rate   |
|-------|-----|-----------|------|--------------|--------------|
| cm    | У   | У         | У    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |           |      |              |              |
| 0.0   |     |           | 2009 |              |              |
| 0.5   | 0   | 1         | 2009 | 6.1          | 0.7          |
| 1.5   | 1   | 1         | 2008 | 6.0          | 0.6          |
| 2.5   | 1   | 1         | 2008 | 6.2          | 0.8          |
| 4.5   | 2   | 1         | 2007 | 6.0          | 0.8          |
| 5.5   | 3   | 1         | 2006 | 5.4          | 0.6          |
| 8.5   | 6   | 1         | 2003 | 4.5          | 0.5          |
| 10.5  | 7   | 1         | 2002 | 4.7          | 0.4          |
| 15.5  | 11  | 1         | 1998 | 5.1          | 0.6          |
| 17.5  | 13  | 1         | 1996 | 4.8          | 0.6          |
| 19.5  | 15  | 1         | 1994 | 5.6          | 0.8          |
| 23.0  | 18  | 1         | 1991 | 5.3          | 0.7          |
| 25.0  | 20  | 1         | 1989 | 4.6          | 0.4          |
| 27.0  | 22  | 1         | 1987 | 5.6          | 0.0          |











Figur 4

Copenhagen, 17 February 2010

Thorbjørn J. Andersen Department of Geography and geology University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@geo.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

## **Revised dating of core CJ31**

#### **Revised dating of core CJ31**

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

The revision made in this report is based on the assumption that the layers 10.5, 16.5 and 21.0 cm are affected by deposition of material anomalously low in unsupported <sup>210</sup>Pb. The better match of the <sup>137</sup>Cs-peak to 1986 indicates that this revised chronology is more reliable.

The core showed surface contents of unsupported <sup>210</sup>Pb of about 150Bq kg<sup>-1</sup> and a tendency for exponential decrease with depth. The calculated flux of unsupported <sup>210</sup>Pb is only 46 Bq m<sup>-2</sup> y<sup>-1</sup>. This is about half the estimated local atmospheric supply (based on data shown in Appleby, 2001) which shows that the site could be subject to occasional erosion.

<sup>137</sup>Cs was measured in the upper part of the core and showed a minor peak around 6.5 cm

CRS-modeling (Appleby, 2001) has been applied on the profile using a modified method where the activity below 23 cm is calculated on the basis of the regression line shown in plot in fig 2. The result is given in table 2 and fig 3 and 4.

Based on the <sup>210</sup>Pb-dating, the peak in <sup>137</sup>Cs-peak is dated to 1981 which is in reasonable agreement with the expected date 1986 (Chernobyl accident) The slight displacement may be explained as caused by mixing of the two expected peaks from 1963 and 1986 (Nucelar weapons testing in the atmosphere and Chernobyl-accident respectively). Cs-137 is also found at depths dated to well before the initial release into nature in the mid 1950's. This indicates that the site is subject to some sediment mixing and the ages given in table 2 are therefore minimum ages.

17 February 2010

Thorbjørn J Andersen

Reference:

Table 1. Core CJ31

| Depth | Pb-<br>210tot | error Pb-<br>210 tot | Pb-210<br>supupp<br>210Pb | error pb-<br>210 sup | Pb-210<br>unsup | error pb-<br>210<br>unsup | Cs-137  | error Cs-<br>137 |
|-------|---------------|----------------------|---------------------------|----------------------|-----------------|---------------------------|---------|------------------|
| cm    | Bq kg-1       | Bq kg-1              | Bq kg-1                   | Bq kg-1              | Bq kg-1         | Bq kg-1                   | Bq kg-1 | Bq kg-1          |
|       |               |                      |                           |                      |                 |                           |         |                  |
| 0.5   | 143           | 13                   | 25                        | 2                    | 128             | 13                        | 16      | 3                |
| 1.5   | 180           | 22                   | 35                        | 7                    | 155             | 23                        | 28      | 2                |
| 2.5   | 142           | 14                   | 24                        | 0                    | 127             | 14                        | 27      | 3                |
| 4.5   | 107           | 10                   | 24                        | 2                    | 94              | 11                        | 31      | 2                |
| 5.5   | 144           | 18                   | 51                        | 7                    | 103             | 20                        | 30      | 3                |
| 6.5   | 115           | 11                   | 23                        | 0                    | 102             | 11                        | 39      | 3                |
| 7.5   | 102           | 14                   | 36                        | 6                    | 76              | 15                        | 34      | 3                |
| 8.5   | 63            | 9                    | 20                        | 3                    | 53              | 9                         | 21      | 3                |
| 10.5  | 31            | 6                    | 25                        | 4                    | 40              | 7                         | 11      | 2                |
| 12.5  | 55            | 8                    | 27                        | 1                    | 38              | 8                         | 10      | 3                |
| 14.5  | 47            | 7                    | 21                        | 3                    | 36              | 8                         | 11      | 2                |
| 16.5  | 24            | 5                    | 24                        | 0                    | 17              | 5                         | 7       | 2                |
| 18.5  | 31            | 6                    | 24                        | 8                    | 16              | 10                        | 7       | 2                |
| 21.0  | 15            | 5                    | 29                        | 3                    | 8               | 6                         | 5       | 2                |
| 23.0  | 20            | 5                    | 26                        | 3                    | 4               | 6                         | 3       | 2                |

NB: values in red are estimated values assuming that the measured value is affected by some sort of redeposition of material with low activity of unsupported <sup>210</sup>Pb

| Table | 2  | Com  | CI | 121 | L |
|-------|----|------|----|-----|---|
| rable | Ζ, | Core | U. | 131 | L |

| Depth | Age |     | error age | Date | acc rate     | error rate   |
|-------|-----|-----|-----------|------|--------------|--------------|
| cm    | у   |     | у         | у    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |     |           |      |              |              |
| 0.0   |     |     |           | 2009 |              |              |
| 0.5   |     | 1   | 2         | 2008 | 0.38         | 0.04         |
| 1.5   |     | 5   | 2         | 2004 | 0.32         | 0.05         |
| 2.5   |     | 10  | 2         | 1999 | 0.28         | 0.03         |
| 4.5   |     | 18  | 2         | 1991 | 0.29         | 0.04         |
| 5.5   |     | 22  | 2         | 1987 | 0.27         | 0.05         |
| 6.5   |     | 28  | 3         | 1981 | 0.22         | 0.03         |
| 7.5   |     | 33  | 3         | 1976 | 0.21         | 0.05         |
| 8.5   |     | 38  | 3         | 1971 | 0.25         | 0.05         |
| 10.5  |     | 45  | 4         | 1964 | 0.28         | 0.05         |
| 12.5  |     | 52  | 5         | 1957 | 0.27         | 0.06         |
| 14.5  |     | 62  | 6         | 1947 | 0.23         | 0.06         |
| 16.5  |     | 72  | 7         | 1937 | 0.22         | 0.07         |
| 18.5  |     | 81  | 9         | 1928 | 0.25         | 0.14         |
| 21.0  |     | 96  | 11        | 1913 | 0.24         | 0.14         |
| 23.0  |     | 107 | 12        | 1902 | 0.30         | 0.11         |







Fig 2





Figur 4 Red: original chronology, Black: revised chronology

Vedlegg 2.6

# Gamma Dating Center Copenhagen

Copenhagen, 27 August 2009

Thorbjørn J. Andersen Institute of Geography University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@geogr.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

## **Dating of core AA2 = Bo21**
#### **Dating of core AA2 = Bo21**

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra low-background Germanium detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

The core showed surface contents of unsupported <sup>210</sup>Pb of about 100 Bq kg<sup>-1</sup> and the activity decreased exponentially with depth. The first levels with absence of unsupported <sup>210</sup>Pb were founds at a depth of 8.5 cm. The calculated flux of unsupported <sup>210</sup>Pb is 104 Bq m<sup>-2</sup> y<sup>-1</sup> which is about the same as the estimated local atmospheric supply (based on data shown in Appleby, 2001).

Significant contents of <sup>137</sup>Cs were measured to a depth of about 17 cm.

CRS-modeling (Appleby, 2001) has been applied on the profile using a modified method where the activity below 7.5 cm is calculated on the basis of the regression line shown in the plot in fig 2. The result is presented in table 2 and fig 3 and 4.

Based on this chronology, high contents of <sup>137</sup>Cs were found in samples from about 1960 and onwards and no peak around 1986 (Chernobyl accident) was observed. It is possible that this really reflects the history at the site but it is not very likely. It is also somewhat worrying that the profiles of unsupported <sup>210</sup>Pb and <sup>137</sup>Cs looks very alike. This indicates that the profiles could be dominated by mixing rather than deposition. Because of this the chronology can only be regarded as indicative and the true ages may be older.

Copenhagen, 27 August 2009

Thorbjørn J Andersen

Gamma Dating Center, Department of Geography and Geology, University of Copenhagen, e-mail: <u>tja@geo.ku.dk</u> Phone: +45 26393503

#### Reference:

Appleby, P.G. (2001): Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers: 171-203.

Table 1. Core AA2

| Depth | Pb-210<br>tot | error Pb-<br>210 tot | Pb-210<br>supp | error pb-<br>210 | Pb-210<br>unsupp | error pb-<br>210 | Cs-137  | error Cs-<br>137 |
|-------|---------------|----------------------|----------------|------------------|------------------|------------------|---------|------------------|
| cm    | Bq kg-1       | Bq kg-1              | Bq kg-1        | Bq kg-1          | Bq kg-1          | Bq kg-1          | Bq kg-1 | Bq kg-1          |
|       |               |                      |                |                  |                  |                  |         |                  |
| 0.50  | 137           | 13                   | 31             | 7                | 106              | 15               | 29      | 3                |
| 1.50  | 149           | 12                   | 39             | 6                | 110              | 14               | 28      | 2                |
| 2.50  | 139           | 12                   | 31             | 3                | 108              | 13               | 27      | 2                |
| 3.50  | 159           | 13                   | 33             | 2                | 125              | 13               | 27      | 2                |
| 4.50  | 110           | 10                   | 32             | 1                | 77               | 10               | 28      | 2                |
| 5.50  | 122           | 11                   | 35             | 7                | 87               | 13               | 31      | 3                |
| 6.50  | 78            | 8                    | 36             | 2                | 42               | 8                | 17      | 2                |
| 7.50  | 48            | 6                    | 28             | 5                | 20               | 8                | 11      | 2                |
| 8.50  | 44            | 5                    | 45             | 5                | 1                | 7                | 12      | 2                |
| 9.50  | 42            | 5                    | 41             | 0                | 1                | 5                | 7       | 2                |
| 10.50 | 54            | 6                    | 45             | 5                | 9                | 8                | 7       | 2                |
| 11.50 | 39            | 4                    | 40             | 3                | 1                | 5                | 5       | 2                |
| 16.50 | 35            | 4                    | 40             | 4                | 1                | 6                | 4       | 2                |
| 24.50 | 46            | 5                    | 49             | 4                | 1                | 7                | 0       | 0                |

Table 2, Chronology of core AA2

| Depth | Age | error age | Date | acc rate     | error rate   |
|-------|-----|-----------|------|--------------|--------------|
| cm    | У   | У         | У    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |           |      |              |              |
| 0.00  |     |           | 2009 |              |              |
| 0.50  | 2   | 2         | 2005 | 0.95         | 0.13         |
| 1.50  | 6   | 2         | 2001 | 0.85         | 0.11         |
| 2.50  | 13  | 2         | 1994 | 0.71         | 0.09         |
| 3.50  | 23  | 3         | 1984 | 0.51         | 0.06         |
| 4.50  | 35  | 3         | 1972 | 0.42         | 0.06         |
| 5.50  | 51  | 5         | 1956 | 0.33         | 0.06         |
| 6.50  | 73  | 6         | 1934 | 0.24         | 0.06         |
| 7.50  | 100 | 10        | 1907 | 0.23         | 0.07         |











Fig 3



# Gamma Dating Center Copenhagen

Copenhagen, 30 August 2009

Thorbjørn J. Andersen Department of Geography and Geology University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@geo.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

# **Dating of core AG3 = 1M4X**

#### **Dating of core AG3 = 1M4X**

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra low-background Germanium detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

The core showed surface contents of unsupported <sup>210</sup>Pb of about 170 Bq kg<sup>-1</sup> and the activity generally decreased exponentially with depth although little variation was observed in the 7 cm. This indicates that site may be subject to shallow mixing/bioturbation. The calculated flux of unsupported <sup>210</sup>Pb is 385 Bq m<sup>-2</sup> y<sup>-1</sup> which is about four times higher that the estimated local atmospheric supply (based on data shown in Appleby, 2001). This shows that the site is subject to sediment focusing.

Significant contents of <sup>137</sup>Cs were measured to a depth of about 25 cm and a broad peak was situated at about 15 cm depth..

CRS-modeling (Appleby, 2001) has been applied on the profile using a modified method where the activity below the lowermost sample is calculated on the basis of the regression line shown in the plot in fig 2. The result is presented in table 2 and fig 3 and 4.

Based on this chronology, the peak activities of <sup>137</sup>Cs were dated to around early 1980's. This points to a Chernobyl-origin (1986) of this material and the small age-discrepancy is probably related to the slight mixing/bioturbation observed in the profile of unsupported <sup>210</sup>Pb. However, the chronology is generally confirmed by the <sup>137</sup>Cs-data (fig 4) and is therefore considered to be reasonably accurate.

Copenhagen, 30 August 2009

Thorbjørn J Andersen

Gamma Dating Center, Department of Geography and Geology, University of Copenhagen, e-mail: <u>tja@geo.ku.dk</u> Phone: +45 26393503

#### Reference:

Appleby, P.G. (2001): Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers: 171-203.

Table 1. Core AG3

| Depth | Pb-<br>210tot | error Pb-<br>210 tot | Pb-210<br>supupp<br>210Pb | error pb-<br>210 sup | Pb-210<br>unsup | error pb-<br>210<br>unsup | Cs-137  | error Cs-<br>137 |
|-------|---------------|----------------------|---------------------------|----------------------|-----------------|---------------------------|---------|------------------|
| cm    | Bq kg-1       | Bq kg-1              | Bq kg-1                   | Bq kg-1              | Bq kg-1         | Bq kg-1                   | Bq kg-1 | Bq kg-1          |
|       |               |                      |                           |                      | 100             |                           | 10      |                  |
| 0.5   | 195           | 25                   | 29                        | 6                    | 166             | 26                        | 12      | 4                |
| 2.5   | 165           | 16                   | 34                        | 1                    | 131             | 16                        | 18      | 2                |
| 4.5   | 164           | 19                   | 33                        | 5                    | 132             | 19                        | 18      | 3                |
| 6.5   | 182           | 18                   | 36                        | 2                    | 146             | 18                        | 21      | 2                |
| 8.5   | 153           | 7                    | 35                        | 2                    | 118             | 7                         | 25      | 2                |
| 10.5  | 162           | 20                   | 33                        | 4                    | 129             | 21                        | 29      | 3                |
| 12.5  | 146           | 15                   | 33                        | 4                    | 113             | 15                        | 40      | 3                |
| 14.5  | 153           | 18                   | 36                        | 3                    | 117             | 18                        | 41      | 3                |
| 16.5  | 131           | 15                   | 34                        | 0                    | 97              | 15                        | 38      | 3                |
| 18.5  | 69            | 10                   | 24                        | 6                    | 45              | 12                        | 18      | 2                |
| 21.0  | 101           | 14                   | 33                        | 4                    | 68              | 14                        | 21      | 3                |
| 23.0  | 93            | 13                   | 35                        | 1                    | 59              | 13                        | 12      | 2                |
| 25.0  | 65            | 10                   | 33                        | 4                    | 32              | 11                        | 5       | 2                |
| 29.0  | 55            | 9                    | 33                        | 2                    | 22              | 9                         | 2       | 2                |
| 31.0  | 56            | 7                    | 34                        | 4                    | 23              | 8                         | 2       | 1                |
| 33.0  | 37            | 7                    | 28                        | 8                    | 10              | 10                        | 3       | 2                |

Table 2, Chronology of core AG3

| Depth | Age | error age | Date | acc rate     | error rate   |
|-------|-----|-----------|------|--------------|--------------|
| cm    | У   | У         | У    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |           |      |              |              |
| 0.00  |     |           | 2009 |              |              |
| 0.50  | 0   | 2         | 2009 | 2.3          | 0.4          |
| 2.50  | 3   | 2         | 2006 | 2.5          | 0.3          |
| 4.50  | 5   | 2         | 2004 | 2.6          | 0.4          |
| 6.50  | 9   | 2         | 2000 | 2.2          | 0.3          |
| 8.50  | 12  | 2         | 1997 | 2.1          | 0.2          |
| 10.50 | 16  | 2         | 1993 | 2.0          | 0.3          |
| 12.50 | 21  | 2         | 1988 | 1.8          | 0.3          |
| 14.50 | 27  | 3         | 1982 | 1.6          | 0.3          |
| 16.50 | 34  | 3         | 1975 | 1.4          | 0.2          |
| 18.50 | 40  | 3         | 1969 | 1.7          | 0.4          |
| 21.00 | 47  | 4         | 1962 | 1.8          | 0.4          |
| 23.00 | 55  | 4         | 1954 | 1.3          | 0.3          |
| 25.00 | 62  | 5         | 1947 | 1.4          | 0.5          |
| 29.00 | 76  | 7         | 1933 | 1.7          | 0.7          |
| 31.00 | 85  | 7         | 1924 | 1.4          | 0.5          |
| 33.00 | 94  | 7         | 1915 | 1.5          | 0.3          |







Fig 2







| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · ·                                |                            |                            |                            |                            |                            |                            |                            |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prøve                                      | Im4x0,5                    | Im4x5,5                    | Im4x13,5                   | Im4x23                     | Im4x29                     | Fl1.1-1,5                  | Fl1.1-17.5                 | Fl1.1-29                   |
| N         264         280         325         305         282         281         277         282           ES(100)         31.56         33.37         31.93         26.00         29.03         23.84         27.12         31.04           H(log2)         4.57         4.74         4.74         4.16         4.42         3.84         4.31         4.46           Ind/gr sed         3041         no data         1699         no data         1016         1212         862         489           Prove         Ep1-25         Ep1-29         Ep1-33         Ep1-43         Ep1-51         Ep1-65         Dk2-6.5         Dk2-6.5         Dk2-31           Ant arter         15         17         20         31         34         37         39         35           S100         10.76         13.26         13.18         22.06         23.35         25.44         26.15         22.71           H'(102)         2.35         2.70         2.72         3.72         3.67         4.04         3.98         4.00           Ind'gr sed         209         633         667         435         131         145         1126         938           Prove                                                                                                                                                                                                                                                                                                                    | Ant. arter                                 | 46                         | 48                         | 51                         | 42                         | 43                         | 35                         | 40                         | 48                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                          | 264                        | 280                        | 325                        | 305                        | 282                        | 281                        | 277                        | 282                        |
| H'(log2)       4.57       4.74       4.77       4.16       4.42       3.87       4.31       4.46         Ind/gr sed       3041       no data       1699       no data       1016       1212       862       489         Prove       Ep1-25       Ep1-29       Ep1-31       Ep1-51       Ep1-60,5       Dk2-6,5       Ak4,64       As1,6       As1,64       As                                                                                                                                                                                                                                                 | ES(100)                                    | 31.56                      | 33.37                      | 31.93                      | 26.00                      | 29.03                      | 23.84                      | 27.12                      | 31.07                      |
| Ind/gr sed         3041         no data         1699         no data         1016         1212         862         489           Prove         Ep1-25         Ep1-29         Ep1-33         Ep1-43         Ep1-51         Ep1-60,5         Dk2-6,5         Dk2-1,5         Dk2-1,5         Dk2-1,5         Dk2-1,5         Dk2-1,5         Dk2-1,5         Dk3-3,5         Adv                                                                                                                                                                                                            | H'(log2)                                   | 4.57                       | 4.74                       | 4.77                       | 4.16                       | 4.42                       | 3.87                       | 4.31                       | 4.46                       |
| Prove         Ep1-25         Ep1-29         Ep1-33         Ep1-43         Ep1-51         Ep1-60,5         Dk2-6,5         Dk2-31           Ant. arter         15         17         20         31         34         37         39         35           N         223         290         253         273         207         229         234         256           ES(100)         10.76         13.26         13.18         22.06         23.35         25.44         26.15         22.71           H'(log2)         2.35         2.70         2.72         3.72         3.67         4.04         3.98         4.00           Ind/gr sed         209         633         667         435         131         145         1126         398           Prove         Cp3-2,5         Cp3-5,5         Cp3-8,5         Cp3-15,5         Cp3-19,5         Cp3-35         B18x-6,5           Ant. arter         18         12         19         36         33         2.77         276         341         332         275           ES(100)         11.95         6.90         11.34         21.55         21.64         22.63         24.05         9.03           H'(log2) </td <td>Ind/gr sed</td> <td>3041</td> <td>no data</td> <td>1699</td> <td>no data</td> <td>1016</td> <td>1212</td> <td>862</td> <td>489</td>                                                                                                                                                               | Ind/gr sed                                 | 3041                       | no data                    | 1699                       | no data                    | 1016                       | 1212                       | 862                        | 489                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                            |                            |                            |                            |                            |                            |                            |                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                            |                            |                            |                            |                            |                            |                            |                            |
| Ant. arter         15         17         20         31         34         37         39         35           N         223         200         253         273         207         229         234         256           ES(100)         10.76         13.26         13.18         22.06         23.35         2.5.44         26.15         22.71           H(log2)         2.35         2.70         2.72         3.72         3.74         4.04         3.98         4.00           Ind/gr sed         209         633         667         435         131         145         1126         398           Prove         Cp3-2,5         Cp3-5,5         Cp3-8,5         Cp3-15,5         Cp3-15,5         Cp3-19,5         Cp3-35         B18x-6.5           Ant. arter         18         12         19         36         33         37         43         16           N         236         338         333         277         276         341         333         275           ES(100)         11.95         6.90         11.34         21.55         21.64         22.63         2405         9.03           H(log2)         2.08         1.50                                                                                                                                                                                                                                                                                                                              | Prøve                                      | Ep1-25                     | Ep1-29                     | Ep1-33                     | Ep1-43                     | Ep1-51                     | Ep1-60.5                   | Dk2-6.5                    | Dk2-31                     |
| N         223         290         253         273         207         229         234         256           ES(100)         10.76         13.26         13.18         22.06         23.35         25.44         26.15         22.71           H'(log2)         2.35         2.70         2.72         3.72         3.67         4.04         3.98         4.00           Ind/gr sed         209         633         667         435         131         145         1126         398           Prove         Cp3-2.5         Cp3-5.5         Cp3-8.5         Cp3-12.5         Cp3-19.5         Cp3-35         B18x-6.5           Ant. arter         18         12         19         36         33         37         43         16           N         236         338         333         277         276         341         332         275           ES(100)         11.95         6.90         11.34         21.55         21.64         22.63         24.05         9.03           H'(log2)         2.08         1.50         2.34         3.64         3.81         3.93         3.86         1.17           Ind/gr sed         818x13.5         B18x-37                                                                                                                                                                                                                                                                                                                      | Ant arter                                  | 15                         | 17                         | 20                         | 31                         | 34                         | 37                         | 39                         | 35                         |
| ES(100)         10.76         13.26         13.18         12.06         23.35         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.7         13.1         14.5         11.26         39.8         4.00           Ind/gr sed         209         633         667         435         131         145         112.6         39.8           Prøve         Cp3-2.5         Cp3-5.5         Cp3-8.5         Cp3-12.5         Cp3-19.5         Cp3-35         B18x-6.5           Ant arter         18         12         19         36         33         37         43         16           N         236         338         333         277         276         341         332         275           ES(100)         11.95         6.90         11.34         21.55         21.64         22.63         24.05         9.03           H'(log2)         2.08         1.50         2.34         3.64         3.81         3.93         3.86         1.17           Ind/gr sed         818x-13,5         B18x-23         B18x-37         Dm2-15,5         Dm2-16,5                                                                                                                                                                                                                                                                                           | N                                          | 223                        | 290                        | 253                        | 273                        | 207                        | 229                        | 234                        | 256                        |
| Bistory         Bistory <t< td=""><td>FS(100)</td><td>10.76</td><td>13.26</td><td>13 18</td><td>275</td><td>23 35</td><td>25 44</td><td>26 15</td><td>22 71</td></t<> | FS(100)                                    | 10.76                      | 13.26                      | 13 18                      | 275                        | 23 35                      | 25 44                      | 26 15                      | 22 71                      |
| Ind/gg sed         2.00         633         667         435         131         145         1126         398           Prøve         Cp3-2,5         Cp3-5,5         Cp3-8,5         Cp3-12,5         Cp3-15,5         Cp3-35         B18x-6.5           Ant. arter         18         12         19         36         33         37         43         16           N         236         338         333         277         276         341         332         275           ES(100)         11.95         6.90         11.34         21.55         21.64         22.63         24.05         9.03           H'(log2)         2.08         1.50         2.34         3.64         3.81         3.93         3.86         1.17           Ind/gr sed         841         1483         1825         907         263         248         275         1284           Prøve         B18x13,5         B18x-23         B18x-37         Dm2-3,5         Dm2-16,5         Dm2-27         Dm2-45           Ant. arter         25         35         30         7         17         20         33         36           Prøve         B18x13,5         B18x-23         B02-17                                                                                                                                                                                                                                                                                                                | $H'(\log 2)$                               | 2 35                       | 2 70                       | 2 72                       | 3 72                       | 25.55                      | 4.04                       | 3 98                       | <u> </u>                   |
| Integrised         209         033         007         433         131         143         1120         396           Prøve         Cp3-2,5         Cp3-5,5         Cp3-8,5         Cp3-12,5         Cp3-19,5         Cp3-35         B18x-6.5           Ant. arter         18         12         19         36         33         37         43         16           N         236         338         333         277         276         341         332         275           ES(100)         11.95         6.90         11.34         21.55         21.64         22.63         24.05         9.03           H'(log2)         2.08         1.50         2.34         3.64         3.81         3.93         3.86         1.17           Ind/gr sed         841         1483         1825         907         263         248         275         1284           Prøve         B18x13,5         B18x-37         Dm2-3,5         Dm2-12,5         Dm2-16,5         Dm2-27         Dm2-45           Ant. arter         25         35         30         7         17         20         33         3.6           N         240         326         277         5.8                                                                                                                                                                                                                                                                                                                   | Ind/gr sed                                 | 2.55                       | 622                        | 667                        | 125                        | 121                        | 1/5                        | 1126                       | 202                        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mu/gi seu                                  | 209                        | 033                        | 007                        | 433                        | 131                        | 145                        | 1120                       | 398                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                            |                            |                            |                            |                            |                            |                            |                            |
| Ant. arter         133         137         143         16           Ant. arter         18         12         19         36         33         37         43         16           N         236         338         333         277         276         341         332         275           ES(100)         11.95         6.90         11.34         21.55         21.64         22.63         24.05         9.03           H'(log2)         2.08         1.50         2.34         3.64         3.81         3.93         3.86         1.17           Ind/gr sed         841         1483         1825         907         263         248         275         1284           Prøve         B18x13.5         B18x-23         B18x-37         Dm2-3.5         Dm2-12.5         Dm2-16.5         Dm2-27         Dm2-45           Ant. arter         25         35         30         7         17         20         33         36           N         240         326         287         223         280         347         278         299           ES(100)         15.66         20.02         20.17         5.81         9.64         12.79 <td< td=""><td>Prove</td><td><math>Cn_{3-2} 5</math></td><td>Cn3-5 5</td><td>Cn3-8 5</td><td>Cn3-12.5</td><td>Cp3-15.5</td><td>Cp3-19.5</td><td>Cn3-35</td><td>B18x-6 5</td></td<>                                                                                                                                                 | Prove                                      | $Cn_{3-2} 5$               | Cn3-5 5                    | Cn3-8 5                    | Cn3-12.5                   | Cp3-15.5                   | Cp3-19.5                   | Cn3-35                     | B18x-6 5                   |
| Name         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         1                                                                                                                                                                                                                                                                                                                            | Ant arter                                  | 18                         | 12                         | 19                         | 36                         | 33                         | 37                         | 43                         | 16 DIOX 0.5                |
| ES(100)         11.95         6.90         11.34         21.55         21.64         22.63         24.05         9.03           H'(log2)         2.08         1.50         2.34         3.64         3.81         3.93         3.86         1.17           Ind/gr sed         841         1483         1825         907         263         248         275         1284           Prøve         B18x13,5         B18x-23         B18x-37         Dm2-3,5         Dm2-12,5         Dm2-16,5         Dm2-27         Dm2-45           Ant. arter         25         35         30         7         17         20         33         36           N         240         326         287         223         280         347         278         299           ES(100)         15.66         20.02         20.17         5.81         9.64         12.79         19.72         22.99           H'(log2)         2.66         3.13         3.29         0.98         1.33         2.31         2.75         3.87           Ind/gr sed         697         296         226         222         1119         1427         1208         416           Prøve         EA1-1,5                                                                                                                                                                                                                                                                                                                  | N                                          | 236                        | 338                        | 333                        | 277                        | 276                        | 341                        | 332                        | 275                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FS(100)                                    | 11 95                      | 6 90                       | 11 34                      | 21 55                      | 2164                       | 22 63                      | 24.05                      | 9.03                       |
| Int(log2)       2.03       1.30       2.34       3.04       3.01       3.75       2.05       1.17         Ind/gr sed       841       1483       1825       907       263       248       275       1284         Prøve       B18x13,5       B18x-23       B18x-37       Dm2-3,5       Dm2-12,5       Dm2-16,5       Dm2-27       Dm2-45         Ant. arter       25       35       30       7       17       20       33       36         N       240       326       287       223       280       347       278       299         ES(100)       15.66       20.02       20.17       5.81       9.64       12.79       19.72       22.99         H'(log2)       2.66       3.13       3.29       0.98       1.33       2.31       2.75       3.87         Ind/gr sed       697       296       226       222       1119       1427       1208       416         Prøve       EA1-1,5       EA1-6,5       EA1-9,5       EA1-17,5       EA1-32,5       Bo2-1,5       Bo2-4,5         Ant. arter       19       15       24       43       33       31       277       21         N                                                                                                                                                                                                                                                                                                                                                                                                       | $H'(\log 2)$                               | 2.08                       | 1 50                       | 2 3/                       | 3.64                       | 3 81                       | 3 93                       | 3 86                       | 1 17                       |
| Prøve         B18x13,5         B18x-23         B18x-37         Dm2-3,5         Dm2-12,5         Dm2-16,5         Dm2-27         Dm2-45           Ant. arter         25         35         30         7         17         20         33         36           N         240         326         287         223         280         347         278         299           ES(100)         15.66         20.02         20.17         5.81         9.64         12.79         19.72         22.99           H(log2)         2.66         3.13         3.29         0.98         1.33         2.31         2.75         3.87           Ind/gr sed         697         296         226         222         1119         1427         1208         416           Prøve         EA1-1,5         EA1-3,5         EA1-6,5         EA1-9,5         EA1-17,5         EA1-32,5         Bo2-1,5         Bo2-4,5           Ant. arter         19         15         24         43         33         31         277         21           N         352         379         272         374         276         221         413         260           ES(100)         11.37 <t< td=""><td>Ind/gr gad</td><td>2.00<br/>8/1</td><td>1.50</td><td>1825</td><td>007</td><td>262</td><td>218</td><td>275</td><td>1.17</td></t<>                                                                                                                                                                           | Ind/gr gad                                 | 2.00<br>8/1                | 1.50                       | 1825                       | 007                        | 262                        | 218                        | 275                        | 1.17                       |
| PrøveB18x13,5B18x-23B18x-37Dm2-3,5Dm2-12,5Dm2-16,5Dm2-27Dm2-45Ant. arter253530717203336N240326287223280347278299ES(100)15.6620.0220.175.819.6412.7919.7222.99H'(log2)2.663.133.290.981.332.312.753.87Ind/gr sed697296226222111914271208416PrøveEA1-1,5EA1-3,5EA1-6,5EA1-9,5EA1-17,5EA1-32,5Bo2-1,5Bo2-4,5Ant. arter1915244333312721N352379272374276221413260ES(100)11.379.1115.3024.3020.9222.7713.9413.53H'(log2)2.222.082.733.863.573.982.572.43Ind/gr sed3186341512092374951225642014PrøveBo2-7,5Bo2-15,5Bo2-24,5Cj3-0,5Cj3-3,5Cj3-7,5Cj3-11,5Cj3-14,5Ant. arter19302.8332.82.13.533.7N2.782.712.542.902.793.053.123.60ES(100)11.3521.4019.09 <td>mu/gi seu</td> <td>041</td> <td>1403</td> <td>1623</td> <td>907</td> <td>203</td> <td>240</td> <td>213</td> <td>1204</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mu/gi seu                                  | 041                        | 1403                       | 1623                       | 907                        | 203                        | 240                        | 213                        | 1204                       |
| Prøve         B18x13,5         B18x-23         B18x-37         Dm2-3,5         Dm2-12,5         Dm2-16,5         Dm2-27         Dm2-45           Ant. arter         25         35         30         7         17         20         33         36           N         240         326         287         223         280         347         278         299           ES(100)         15.66         20.02         20.17         5.81         9.64         12.79         19.72         22.99           H'(log2)         2.66         3.13         3.29         0.98         1.33         2.31         2.75         3.87           Ind/gr sed         697         296         226         222         1119         1427         1208         416           Prøve         EA1-1,5         EA1-3,5         EA1-6,5         EA1-9,5         EA1-17,5         EA1-32,5         Bo2-1,5         Bo2-4,5           Ant. arter         19         15         24         43         33         31         27         21           N         352         379         272         374         276         221         413         260           ES(100)         11.37 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                         |                                            |                            |                            |                            |                            |                            |                            |                            |                            |
| Ant. arter         25         35         30         7         17         20         33         36           N         240         326         287         223         280         347         278         299           ES(100)         15.66         20.02         20.17         5.81         9.64         12.79         19.72         22.99           H'(log2)         2.66         3.13         3.29         0.98         1.33         2.31         2.75         3.87           Ind/gr sed         697         296         226         222         1119         1427         1208         416           Prøve         EA1-1,5         EA1-3,5         EA1-6,5         EA1-9,5         EA1-17,5         EA1-3,25         Bo2-1,5         Bo2-4,5           Ant. arter         19         15         24         43         33         31         27         21           N         352         379         272         374         276         221         413         260           ES(100)         11.37         9.11         15.30         24.30         20.92         2.77         13.94         13.53           H'(log2)         2.22         2.08                                                                                                                                                                                                                                                                                                                              | Prøve                                      | B18x13 5                   | B18x-23                    | B18x-37                    | Dm2-3.5                    | Dm2-12.5                   | Dm2-16.5                   | Dm2-27                     | Dm2-45                     |
| Nill arter         2.0         3.0         7         1.1         2.0         3.0         3.0         1.1         1.0         1.0         3.0         3.0         3.0         1.1         1.0         1.0         3.0         3.0         3.0         1.1         1.0         1.0         3.0         3.0         1.1         1.0         1.0         3.0         3.0         1.0         1.0         1.0         1.0         3.0         3.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <th1.0< th="">         1.0         <th1.0< th=""> <th1.0< <="" td=""><td>Ant arter</td><td>25</td><td><u>BIOX 25</u><br/>35</td><td>30</td><td>7</td><td>17</td><td>20</td><td>33</td><td>36</td></th1.0<></th1.0<></th1.0<>                                                                                                 | Ant arter                                  | 25                         | <u>BIOX 25</u><br>35       | 30                         | 7                          | 17                         | 20                         | 33                         | 36                         |
| N         240         320         237         223         236         347         278         279           ES(100)         15.66         20.02         20.17         5.81         9.64         12.79         19.72         22.99           H'(log2)         2.66         3.13         3.29         0.98         1.33         2.31         2.75         3.87           Ind/gr sed         697         296         226         222         1119         1427         1208         416           Prøve         EA1-1,5         EA1-3,5         EA1-6,5         EA1-9,5         EA1-17,5         EA1-32,5         Bo2-1,5         Bo2-4,5           Ant. arter         19         15         24         43         33         31         27         21           N         352         379         272         374         276         221         413         260           ES(100)         11.37         9.11         15.30         24.30         20.92         22.77         13.94         13.53           H'(log2)         2.22         2.08         2.73         3.86         3.57         3.98         2.57         2.43           Ind/gr sed         3186         <                                                                                                                                                                                                                                                                                                               | N N                                        | 23                         | 326                        | 287                        | 223                        | 280                        | 347                        | 278                        | 200                        |
| H3(100)       13.00       20.02       20.11       3.81       9.04       12.79       19.12       222.99         H'(log2)       2.66       3.13       3.29       0.98       1.33       2.31       2.75       3.87         Ind/gr sed       697       296       226       222       1119       1427       1208       416         Prøve       EA1-1,5       EA1-3,5       EA1-6,5       EA1-9,5       EA1-17,5       EA1-32,5       Bo2-1,5       Bo2-4,5         Ant. arter       19       15       24       43       33       31       27       21         N       352       379       272       374       276       221       413       260         ES(100)       11.37       9.11       15.30       24.30       20.92       22.77       13.94       13.53         H'(log2)       2.22       2.08       2.73       3.86       3.57       3.98       2.57       2.43         Ind/gr sed       3186       3415       1209       237       495       12       2564       2014         Prøve       Bo2-7,5       Bo2-15,5       Bo2-24,5       Cj3-0,5       Cj3-3,5       Cj3-7,5       Cj3-11,5       Cj                                                                                                                                                                                                                                                                                                                                                                                 | ES(100)                                    | 15.66                      | 20.02                      | 2017                       | 5.81                       | 0.64                       | 12 70                      | 10.72                      | 299                        |
| H (10g2)       2.00       3.13       3.29       0.98       1.33       2.31       2.73       3.87         Ind/gr sed       697       296       226       222       1119       1427       1208       416         Prøve       EA1-1,5       EA1-3,5       EA1-6,5       EA1-9,5       EA1-17,5       EA1-32,5       Bo2-1,5       Bo2-4,5         Ant. arter       19       15       24       43       33       31       27       21         N       352       379       272       374       276       221       413       260         ES(100)       11.37       9.11       15.30       24.30       20.92       22.77       13.94       13.53         H'(log2)       2.22       2.08       2.73       3.86       3.57       3.98       2.57       2.43         Ind/gr sed       3186       3415       1209       237       495       12       2564       2014         Prøve       Bo2-7,5       Bo2-15,5       Bo2-24,5       Cj3-0,5       Cj3-3,5       Cj3-7,5       Cj3-11,5       Cj3-14,5         Ant. arter       19       30       2.8       33       2.8       21       35       37 </td <td><math display="block">\frac{\text{LS}(100)}{\text{LI}(\log 2)}</math></td> <td>13.00</td> <td>20.02</td> <td>20.17</td> <td>0.09</td> <td>9.04</td> <td>2 21</td> <td>19.72</td> <td>22.99</td>                                                                                                                                                                                    | $\frac{\text{LS}(100)}{\text{LI}(\log 2)}$ | 13.00                      | 20.02                      | 20.17                      | 0.09                       | 9.04                       | 2 21                       | 19.72                      | 22.99                      |
| Ind/gr sed         697         296         226         222         1119         1427         1208         416           Prøve         EA1-1,5         EA1-3,5         EA1-6,5         EA1-9,5         EA1-17,5         EA1-32,5         Bo2-1,5         Bo2-4,5           Ant. arter         19         15         24         43         33         31         27         21           N         352         379         272         374         276         221         413         260           ES(100)         11.37         9.11         15.30         24.30         20.92         22.77         13.94         13.53           H'(log2)         2.22         2.08         2.73         3.86         3.57         3.98         2.57         2.43           Ind/gr sed         3186         3415         1209         237         495         12         2564         2014           Prøve         Bo2-7,5         Bo2-15,5         Bo2-24,5         Cj3-0,5         Cj3-3,5         Cj3-7,5         Cj3-11,5         Cj3-14,5           Ant. arter         19         30         28         33         28         21         35         37           N         278                                                                                                                                                                                                                                                                                                                | П (log2)<br>Ind/cm and                     | 2.00                       | 206                        | 3.29                       | 0.98                       | 1.33                       | 2.31                       | 2.73                       | 3.0/                       |
| PrøveEA1-1,5EA1-3,5EA1-6,5EA1-9,5EA1-17,5EA1-32,5Bo2-1,5Bo2-4,5Ant. arter1915244333312721N352379272374276221413260ES(100)11.379.1115.3024.3020.9222.7713.9413.53H'(log2)2.222.082.733.863.573.982.572.43Ind/gr sed3186341512092374951225642014PrøveBo2-7,5Bo2-15,5Bo2-24,5Cj3-0,5Cj3-3,5Cj3-7,5Cj3-11,5Cj3-14,5Ant. arter1930283328213537N278271254290279305312360ES(100)11.3521.4019.0921.2517.1913.5221.0319.57H'(log2)2.423.453.343.482.842.563.583.50Ind/gr sed7293121611403181621061062827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ind/gr sed                                 | 09/                        | 290                        | 220                        |                            | 1119                       | 1427                       | 1208                       | 410                        |
| Prøve         Bo2-1,5         EA1-5,5         EA1-6,5         EA1-5,5         EA1-7,5         EA1-3,5                                                                                                                                                 | Droug                                      | EA115                      | EA125                      | EA165                      | EA105                      | EA1 175                    | EA1 22 5                   | Do2 1 5                    | Do2 15                     |
| Ant. arter       19       13       24       43       33       31       27       21         N       352       379       272       374       276       221       413       260         ES(100)       11.37       9.11       15.30       24.30       20.92       22.77       13.94       13.53         H'(log2)       2.22       2.08       2.73       3.86       3.57       3.98       2.57       2.43         Ind/gr sed       3186       3415       1209       237       495       12       2564       2014         Prøve       Bo2-7,5       Bo2-15,5       Bo2-24,5       Cj3-0,5       Cj3-3,5       Cj3-7,5       Cj3-11,5       Cj3-14,5         Ant. arter       19       30       2.8       33       2.8       21       35       37         N       278       271       254       290       279       305       312       360         ES(100)       11.35       21.40       19.09       21.25       17.19       13.52       21.03       19.57         H'(log2)       2.42       3.45       3.34       3.48       2.84       2.56       3.58       3.50         Ind/g                                                                                                                                                                                                                                                                                                                                                                                                           | Pløve                                      | EAI-1,3                    | EAI-3,3                    | EA1-0,3                    | EA1-9,3                    | EAI-1/,3                   | EA1-52,5                   | D02-1,3                    | D02-4,3                    |
| N         352         379         272         374         276         221         413         260           ES(100)         11.37         9.11         15.30         24.30         20.92         22.77         13.94         13.53           H'(log2)         2.22         2.08         2.73         3.86         3.57         3.98         2.57         2.43           Ind/gr sed         3186         3415         1209         237         495         12         2564         2014           Prøve         Bo2-7,5         Bo2-15,5         Bo2-24,5         Cj3-0,5         Cj3-3,5         Cj3-7,5         Cj3-11,5         Cj3-14,5           Ant. arter         19         30         28         33         28         21         35         37           N         278         271         254         290         279         305         312         360           ES(100)         11.35         21.40         19.09         21.25         17.19         13.52         21.03         19.57           H'(log2)         2.42         3.45         3.34         3.48         2.84         2.56         3.58         3.50           Ind/gr sed         729                                                                                                                                                                                                                                                                                                                     | Ant. arter                                 | 19                         | 15                         | 24                         | 43                         | 33                         | 31                         | 27                         | 21                         |
| ES(100)       11.37       9.11       15.30       24.30       20.92       22.77       13.94       13.53         H'(log2)       2.22       2.08       2.73       3.86       3.57       3.98       2.57       2.43         Ind/gr sed       3186       3415       1209       237       495       12       2564       2014         Prøve       Bo2-7,5       Bo2-15,5       Bo2-24,5       Cj3-0,5       Cj3-3,5       Cj3-7,5       Cj3-11,5       Cj3-14,5         Ant. arter       19       30       28       33       28       21       35       37         N       278       271       254       290       279       305       312       360         ES(100)       11.35       21.40       19.09       21.25       17.19       13.52       21.03       19.57         H'(log2)       2.42       3.45       3.34       3.48       2.84       2.56       3.58       3.50         Ind/gr sed       729       312       161       1403       1816       2106       1062       827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 352                        | 3/9                        | 272                        | 3/4                        | 276                        | 221                        | 413                        | 260                        |
| H(log2)       2.22       2.08       2.73       3.86       3.57       3.98       2.57       2.43         Ind/gr sed       3186       3415       1209       237       495       12       2564       2014         Prøve       Bo2-7,5       Bo2-15,5       Bo2-24,5       Cj3-0,5       Cj3-3,5       Cj3-7,5       Cj3-11,5       Cj3-14,5         Ant. arter       19       30       28       33       28       21       35       37         N       278       271       254       290       279       305       312       360         ES(100)       11.35       21.40       19.09       21.25       17.19       13.52       21.03       19.57         H'(log2)       2.42       3.45       3.34       3.48       2.84       2.56       3.58       3.50         Ind/gr sed       729       312       161       1403       1816       2106       1062       827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ES(100)                                    | 11.37                      | 9.11                       | 15.30                      | 24.30                      | 20.92                      | 22.77                      | 13.94                      | 13.53                      |
| Ind/gr sed         3186         3415         1209         237         495         12         2564         2014           Prøve         Bo2-7,5         Bo2-15,5         Bo2-24,5         Cj3-0,5         Cj3-3,5         Cj3-7,5         Cj3-11,5         Cj3-14,5           Ant. arter         19         30         28         33         28         21         35         37           N         278         271         254         290         279         305         312         360           ES(100)         11.35         21.40         19.09         21.25         17.19         13.52         21.03         19.57           H'(log2)         2.42         3.45         3.34         3.48         2.84         2.56         3.58         3.50           Ind/gr sed         729         312         161         1403         1816         2106         1062         827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H'(log2)                                   | 2.22                       | 2.08                       | 2.73                       | 3.86                       | 3.57                       | 3.98                       | 2.57                       | 2.43                       |
| PrøveBo2-7,5Bo2-15,5Bo2-24,5Cj3-0,5Cj3-3,5Cj3-7,5Cj3-11,5Cj3-14,5Ant. arter1930283328213537N278271254290279305312360ES(100)11.3521.4019.0921.2517.1913.5221.0319.57H'(log2)2.423.453.343.482.842.563.583.50Ind/gr sed7293121611403181621061062827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ind/gr sed                                 | 3186                       | 3415                       | 1209                       | 237                        | 495                        | 12                         | 2564                       | 2014                       |
| PrøveBo2-7,5Bo2-15,5Bo2-24,5Cj3-0,5Cj3-3,5Cj3-7,5Cj3-11,5Cj3-14,5Ant. arter1930283328213537N278271254290279305312360ES(100)11.3521.4019.0921.2517.1913.5221.0319.57H'(log2)2.423.453.343.482.842.563.583.50Ind/gr sed7293121611403181621061062827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                            |                            |                            |                            |                            |                            |                            |                            |
| Fibre         B02-1,3         B02-13,3         B02-24,3         CJ3-0,3         CJ3-3,3         CJ3-1,3         CJ3-14,3           Ant. arter         19         30         28         33         28         21         35         37           N         278         271         254         290         279         305         312         360           ES(100)         11.35         21.40         19.09         21.25         17.19         13.52         21.03         19.57           H'(log2)         2.42         3.45         3.34         3.48         2.84         2.56         3.58         3.50           Ind/gr sed         729         312         161         1403         1816         2106         1062         827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ducarte                                    | D-275                      | Do2 15 5                   | Do2 24 5                   | Ci2 0 5                    | C:2.2.5                    | C:2 7 5                    | Ci2 11 5                   | Ci2 14 5                   |
| N         278         271         254         290         279         305         312         360           ES(100)         11.35         21.40         19.09         21.25         17.19         13.52         21.03         19.57           H'(log2)         2.42         3.45         3.34         3.48         2.84         2.56         3.58         3.50           Ind/gr sed         729         312         161         1403         1816         2106         1062         827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | т ргихет                                   |                            |                            | DUZ-24.31                  | UJ3-0,3                    | CJ2-2,2                    | UJ2-7,2                    | UJ2-11,2                   | CJ3-14,5                   |
| IN         278         271         254         290         279         305         312         360           ES(100)         11.35         21.40         19.09         21.25         17.19         13.52         21.03         19.57           H'(log2)         2.42         3.45         3.34         3.48         2.84         2.56         3.58         3.50           Ind/gr sed         729         312         161         1403         1816         2106         1062         827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ant orter                                  | B02-7,3                    | 20                         |                            | 22                         | 20                         | 21                         | 251                        | 27                         |
| ES(100)         11.35         21.40         19.09         21.25         17.19         13.52         21.03         19.57           H'(log2)         2.42         3.45         3.34         3.48         2.84         2.56         3.58         3.50           Ind/gr sed         729         312         161         1403         1816         2106         1062         827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ant. arter                                 | B02-7,5<br>19              | 30<br>30                   | 28                         | 33                         | 28                         | 21                         | 35                         | 37                         |
| H (10g2)         2.42         3.45         3.34         3.48         2.84         2.56         3.58         3.50           Ind/gr sed         729         312         161         1403         1816         2106         1062         827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ant. arter                                 | B02-7,5<br>19<br>278       | 30<br>271<br>21.40         | 28<br>254                  | 33<br>290                  | 28<br>279                  | 21<br>305                  | 35<br>312                  | 37<br>360                  |
| Ind/gr sed 729 312 161 1403 1816 2106 1062 827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ant. arter<br>N<br>ES(100)                 | 19<br>278<br>11.35         | 30<br>271<br>21.40         | 28<br>254<br>19.09         | 33<br>290<br>21.25         | 28<br>279<br>17.19         | 21<br>305<br>13.52         | 35<br>312<br>21.03         | 37<br>360<br>19.57         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ant. arter<br>N<br>ES(100)<br>H'(log2)     | 19<br>278<br>11.35<br>2.42 | 30<br>271<br>21.40<br>3.45 | 28<br>254<br>19.09<br>3.34 | 33<br>290<br>21.25<br>3.48 | 28<br>279<br>17.19<br>2.84 | 21<br>305<br>13.52<br>2.56 | 35<br>312<br>21.03<br>3.58 | 37<br>360<br>19.57<br>3.50 |

| Prøve      | Cj3-23 | Ep1-2,5 | Ep1-21  | B18x-1,5 |
|------------|--------|---------|---------|----------|
| Ant. arter | 45     | 3       | 6       | 5        |
| N          | 281    | 5       | 8       | 25       |
| ES(100)    | 27.43  | no data | no data | no data  |
| H'(log2)   | 4.20   | no data | no data | no data  |
| Ind/gr sed | 361    | 8       | 39      | 280      |

Vedlegg 3

## Vedlegg 4. (1/4)

| 2 2 C            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                           |
|------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 3-4<br>Dm2       | 000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 38cm<br>8x-37    | 0 0 0                  | 20000-004000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000-00                                             | 0 0 0 0 0 0 0 0                                                                    | 0-004000+                                                                    | 0 0 1 0 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000000000                                                   | 000000000000000000000000000000000000000                                                          |
| 8 B              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| -24cm            | 0 0 0                  | 0000-0005000-00-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00-0-0-0-0-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | 00-000040                                                                          | 0000-0000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000000000000000000000000000000000000000                      | 00000-000200                                                                                     |
| е 2<br>2         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 3-14c<br>18x13   | 0 0 0                  | 200000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000000                                             | 00-00-000                                                                          | 0000-0000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000800000                                                    | 0080m000+0000++                                                                                  |
| - a              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • • • • • • • • • • • • • • • • • • • •             |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 5-7cm<br>18x-6   | 0 0 0                  | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                                                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                        | 000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000000000                                                   | 0000-0000000                                                                                     |
|                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| -2cm<br>8x-1     | 0 0 0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000000000000                                               |                                                                                                  |
| in<br>م ع        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 4-36c<br>Co3-3   | 00+                    | 0-00000-0-0-000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | 0000070                                                                            | 400000-00                                                                    | 000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000000000                                                   | 00000-700000000000000000000000000000000                                                          |
| cm<br>6 5        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 19-20<br>Cn3-1   | 0 0 0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000707000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000-00                                            | 00000000000                                                                        | -000000-00                                                                   | 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000000400                                                    |                                                                                                  |
| 6cm<br>15.5      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 15-1<br>Co3      |                        | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | () (m ) (4 ) () () () () () () () () () () () () (                                               |
| -13cm<br>3-12.5  | 0 0 0                  | 80000000-0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000-00000-00-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | 0 0 0 0 0 0 0 0 0                                                                  | 0000+000+0                                                                   | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000000000                                                   | 0000-0-0-0000-                                                                                   |
| 5 Cp             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 8-9cm<br>:p3-8   | 00+                    | 000-00000000-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | 0 0 0 0 0 0 - 0                                                                    | 0000000000                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000000000000000000000000000000000000000                      | 000000000000000000000000000000000000000                                                          |
| cm<br>5.5 C      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000                                                         |                                                                                                  |
| 5-6<br>Cp3       | 000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| -3cm             | 0 0 0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000-0700000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | 13000000000                                                                        | 0000-0000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000000000                                                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                            |
| NO<br>E          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ┟╌┇╴┇╴╏╴┇╴┫╴╬╶╋╴┫╸┝╸┪╸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +++++++++++++++++++++++++++++++++++++++             |                                                                                    | <u></u><br><u></u><br> -}- <u>}-</u><br>                                     | ╈┼┼╋╋╌┥┼╍╌╸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | ╶╅╍╬╍╬╍╬╍╬╍╬╍╬╍╬╍╬╍╬╍╬╍╬╍╬                                                                       |
| 30-320<br>DK2-3  | 0 0 0                  | 40 - 0 0 0 0 0 0 0 0 - 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00000-0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000-00                                             | 0 0 0 0 0 0 0 0 0                                                                  | @000-0000                                                                    | 000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000-004-0                                                    | 3 <sup>3</sup> 0<br>000000-00-00000000000000000000000000                                         |
| с <sup>2</sup> 9 |                        | <sup>(μ</sup> ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 6-7<br>Dk2       | 0.00                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | 0000000000000                                                                      |                                                                              | 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |                                                                                                  |
| 0-61             | 0 0 0                  | 00500000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000000                                              | 0 0 0 0 0 0 0 0                                                                    | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                    | 0-00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000-0-0                                                    | 0000-00-00000                                                                                    |
| 9 g              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +++++++++++++++++++++++++++++++++++++++             |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 0-52<br>01-51    | 000                    | 000-00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00-000000-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000-0                                             | 00-000000                                                                          | 0-00-00-0                                                                    | 0000 - 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000000000                                                    | - 0 0 0 7 0 0 0 0 0                                                                              |
| ., П             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 42-44<br>01-43   | 000                    | 0000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00-000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000-0400                                            | 0 0 0 0 0 0 0 0 0                                                                  | 0 0 0 0 m 0 0 0 0                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000440000                                                   | 00000-00900-00000                                                                                |
|                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 32-34<br>51-3    | 000                    | 200000-0000-00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00-00-0-000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     | 000-0000                                                                           | 000040000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000000000                                                  | 000000000000000000000000000000000000000                                                          |
| 0                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 28-30<br>Ep1-2   | 000                    | •••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | 0 0 0 0 0 0 0 0 0 0 0 0                                                            | 000020000                                                                    | 000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                      | 000000000000000000000000000000000000000                                                          |
| -25              | 0.00                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 24<br>1 En       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000                                                         |                                                                                                  |
| 20-22<br>En1-2   | 000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000000-00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | o o o o o o o o o                                                                  | 0000000000                                                                   | 000-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000-00000                                                    |                                                                                                  |
| cm<br>-2.5       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 2-3<br>En1       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 8-30             | 0 0 0                  | 000,00000,00000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00+00400                                            | -0000000                                                                           | - 0 0 0 0 0 0 0 0                                                            | 0 - 0 0 0 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000-00000                                                    | 0 0 - 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                    |
| 5 FI1            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 17-18            | 0 0 0                  | 80-1000-0000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000000004000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     | 000000-00                                                                          | - 000-0000                                                                   | 000704000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~ ~ <del>~</del> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~             | 0 0 0 0 4 m 0 0 5 3 <del>3</del> 7 5 5                                                           |
| 5 F              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              | ╈╬╋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                                                                  |
| 1-2<br>511.1-1   | 000                    | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 004000-000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00700700                                            | 000000000000                                                                       | 000000000                                                                    | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0004000000                                                   | 0 0 0 0 2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                        |
| -30              |                        | P0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 28<br>Im4        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 2-24<br>4x23     | 0 + +                  | 000000-00000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00-00000-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | - 0 0 0 0 0 0 0                                                                    | v o o o <del>1</del> o o o v                                                 | -0040500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00-0-00                                                      |                                                                                                  |
| 5 2              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 13-14<br>14x13   | 0 0 0                  | 0 0 1 m 0 0 5 5 0 2 0 0 0 0 0 0 1 m 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00400-00                                            | 4 4 0 0 0 0 0 0 0 4                                                                | 000000000000000000000000000000000000000                                      | - 0 0 0 5 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000000940                                                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          |
|                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 5-6<br>m4x5      | 0 0 0                  | ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00000000400+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     | 000000000000000000000000000000000000000                                            | m 4 0 0 m 0 0 0 5                                                            | 200000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000000                                                      | 000-000-0000000000000000000000000000000                                                          |
| 5                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +++++++++++++++++++++++++++++++++++++++             |                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| 0-1 cm           | 0 0 0                  | ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0000004000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00000000                                            | 00000-00                                                                           | 000-00-000                                                                   | 1000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3300000                                                      | 0000-00-0000000000000000000000000000000                                                          |
|                  |                        | idhti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dianac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ĝ                                                   | T. teni                                                                            | )<br>lis                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |
| le cm)           | 6                      | argo<br>sterens<br>imargi<br>minargi<br>imargi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | memt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s<br>cacea                                          | s<br>les<br>ligere                                                                 | nsis<br>skrumpa<br>nis<br>nis                                                | iye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inctata<br>sis                                               | ne<br>lianus                                                                                     |
| werac            | Isilla                 | meral<br>limare<br>seudc<br>uniana<br>enuima<br>enuima<br>enuima<br>sp.<br>sp.<br>sp.<br>eum<br>edus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dialis<br>des bre<br>des cf.<br>ella<br>cilis<br>ottilis<br>ottilis<br>a murr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | binatu<br>niforn<br>ris/m                           | afformi<br>ra bifo<br>erinoid<br>ima<br>ima<br>atensi                              | obiger<br>ata<br>obiger<br>taliforr                                          | iri<br>pallowu<br>ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | plicats<br>ssi<br>is<br>ata<br>ata                           | atta<br>antissi<br>ingata<br>Jasa<br>antion<br>arctica<br>loti<br>lus<br>nns<br>nns              |
| n)<br>10th (5    | ina pu<br>ina sp       | ma gic<br>cus ca<br>llaria p<br>llaria p<br>noides<br>noides<br>noides<br>noides<br>noides<br>noides<br>noides<br>sc<br>des sc<br>des sc<br>des sc<br>des sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | agmoic<br>agmoic<br>agmoic<br>agmoic<br>agmoic<br>sis cat<br>sis cat<br>a<br>mina s<br>agmoic<br>agmoic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | les tro<br>les tur<br>usiforr<br>usiforr<br>ostratt | scorpi<br>subtus<br>sp.<br>ammir<br>bigen<br>contoi<br>gracili<br>earlan<br>katteg | skage<br>sp.<br>sca<br>nna st<br>nna st<br>nna st<br>nna st<br>nna st<br>sca | ninops<br>initied<br>becca<br>sp.<br>n gall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | seudo<br>Ibatro<br>Jamer<br>Jamer<br>kagen<br>pathul         | PP. 7<br>margin<br>na det<br>na det<br>na det<br>mina i<br>berthe<br>berthe<br>speudo<br>refuige |
| e & de           | pocrep<br>camm<br>camm | arcotry<br>modis<br>mosca<br>mosca<br>mosca<br>mosca<br>mosca<br>mosca<br>mosca<br>mosca<br>mosca<br>noston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>roston<br>rost | mospi<br>loophre<br>loophre<br>enami<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>tohaly<br>to | urvoid<br>urvoid<br>phax f<br>phax f                | phax<br>phax<br>ophax<br>ularia<br>ularia<br>ularia<br>ularia                      | tularia<br>tularia<br>chamn<br>hamn<br>hamn                                  | hamm<br>hamm<br>nonia<br>ononic<br>ononic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vina p<br>vina s<br>vinelli<br>alina c<br>alina s<br>alina s | mina mina mina mina mina mina mina mina                                                          |
| C Del            | Sac                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 응 등 후 후 윤 윤 윤 윤 등 등 등 등                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | Rex                                            | 6 6 6 E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                      | Sister and a set of a | 212 202 201                                                  |                                                                                                  |

### Vedlegg 4. (2/4)



| Jepth (cm)                            | 12-13cm ; 16-17cn | n   26-28cm   44-4 | 6cm   1-2cm   3  | -4cm : 6-7cm    | 9-10cm [17-18cr | n: 32-33cm   1-2 | :cm : 4-5cm : 7  | -8cm 15-16cm   | 24-25cm 0-1cn    | n 3-4cm 7-8c    | cm   11-12cm   14- | -15cm 22-24cm |   |
|---------------------------------------|-------------------|--------------------|------------------|-----------------|-----------------|------------------|------------------|----------------|------------------|-----------------|--------------------|---------------|---|
| Core & depth (average cm)             | Dm2-12,5 Dm2-16   | 5 Dm2-27 Dm.       | 2-45 (EA1-1,5 E/ | A1-3,5; EA1-6,5 | EA1-9,5 EA1-17  | 5; EA1-32,5 Bo2  | :-1,5 Bo2-4,5 Bc | 2-7,5 Bo2-15,5 | Bo2-24,5 CJ3-0,t | 5 CJ3-3,5 CJ3-7 | 7,5 CJ3-11,5 CJ3   | 3-14,5 Cj3-23 |   |
| lippocrepina pusilla                  | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| accammina sp.                         | 0                 | 0                  | 0                | 0               | 0<br>0          | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| Saccammina sphaerica                  | 0 : 0             | 0                  | 0 0              | 0 : 0           | 0 0             | 0                | : 0<br>: 0       | 0 : 0          | 0 0              | 0 : 0           | 0                  | 0             |   |
| Adercotryma glomeratum/wrighti        | 9<br><br>8        | 15                 | 2                | 2 : 7           | 25 21           | -                | 1 . 2            | 1              | 8                | 13 14           | 4 24               | 35 38         |   |
| Ammodiscus catinus                    | 0                 | 0                  | 0                | •               | •               | 0                | 9                | 0              | 0                | 0               | 0,                 | 0             |   |
| Ammodiscus gullmarensis               | 0                 | 0                  | 2                | 4               | 3               | 0                | 5                | -              | 0                | 4               | -                  | 0             |   |
| Ammoscalaria pseudospiralis           |                   | 0                  |                  |                 |                 | 0                |                  |                | 0                |                 | 0                  |               |   |
| Ammoscalaria runiana                  | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| Ammoscalaria tenuimargo               | 0                 | 0                  |                  | 0               | 2               | 0                | 0                | 4              | 4                | 0               | 4                  | 7 5           |   |
| sathysiphon sp.                       | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| ribostomoides ct. costerensis         | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| dibrostomoldes crassimargo            |                   |                    |                  |                 | -               |                  |                  |                |                  | 0               | 01                 | -<br>-        |   |
|                                       |                   |                    | ~ ~ ~            |                 |                 |                  |                  | + <            |                  | ~               | × 1                | 2             |   |
| unbrostomoldes nitidum                |                   |                    |                  |                 |                 |                  |                  |                |                  |                 |                    |               |   |
| Cribrostomoides subgrouse             |                   |                    |                  |                 | 0 m             |                  |                  |                |                  |                 |                    |               |   |
| Cuneata arctica                       | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| ggerella europeum                     | 0 : 0             | 0                  | 0 0              | 0 0             | 0 ; 1           | 0                | 0 : 0            | 0 : 0          | 0 0              | 0 : 1           | 0                  | 0 4           |   |
| ggerella sp.                          | 0                 | 0                  |                  | 0               | 2 5             | -<br>-           | 0                | •              | 6 1              | 2 : 0           | 0                  | 0             |   |
| ggerelloides medius                   | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| ggerelloides scaber                   |                   | 0                  |                  |                 |                 |                  |                  |                | 0                |                 | 0                  |               |   |
| Someonia cordialis                    | 0                 | 0                  |                  |                 |                 |                  |                  |                | 0                |                 | 2                  | 0             |   |
| elomospira sp.                        | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0 0            | 0                | 0 0             | 0                  | 0             |   |
| Haplophragmoides bradyi               | 0                 | 0                  | 0                | 0               | 0 0             | 0                | 0                | 0000           | 0 13             | 0 0             | 0                  | 0             |   |
| Haplophragmoides cf. membranac        | 0 : 0             | 0                  | 0                | 0               | 0 : 0           | 0                | 0 : 0            | 0              | 0 4              | 0               | 0                  | 0             |   |
| agenammina sp.                        | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| eptonalysis catella                   | - 0               | 0 0                | 0                | - 0             | 4               | - 0              |                  | - 0            | 0                | 00              | 0                  |               |   |
| eptonalysis catenata                  |                   | 0                  |                  |                 |                 |                  |                  |                |                  |                 |                    |               |   |
| epionalysis gradilis                  |                   |                    |                  |                 |                 |                  | - *              |                |                  |                 |                    |               |   |
| epitorialysis scotti                  |                   |                    |                  |                 |                 |                  |                  |                |                  |                 |                    |               |   |
| iehusella coësi                       | •                 |                    |                  | -<br>-          |                 |                  |                  |                | ) C              |                 | ~ ~                | о с           |   |
| Allammina fusca                       | 0 0               | 0                  | 0 0              | 0 0             | 0 0             | 0                | 2                | 1              | 0 0              | 0 0             |                    | 0 1           |   |
| Aorulaeplecta bulbosa                 | 0                 | 0                  | 0                | 0               | 0 0             | 0                | 0 0              | 0              | 0 0              | 0 0             | 0                  | 0             |   |
| Paratrochammina murrayi               | 0                 | 0                  | 0                | 0               | 0 0             | 0                | 0                | 0000           | 0 0              | 0               | 0                  | 0 0           |   |
| Recurvoides laevigatum                | 0                 | 0                  | 0                | 0               | 0 0             | 0                | 0 : 0            | 0 : 0          | 0 0              | 0 0             | 0                  | 1             |   |
| Recurvoides sp.                       | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0 0              | 0 0             | 0                  | 0             |   |
| Recursoldes trochamminiforme          | 0                 |                    | 0                | 0               | 1               | 0                | 0                | 0              | c 0              | 3               |                    | 2 1           |   |
|                                       |                   | 0                  |                  |                 |                 |                  |                  |                |                  |                 |                    | - 0           |   |
| cecurvoides turbinatus                |                   | 0                  |                  | -               |                 |                  |                  |                | 0                |                 | 0                  |               |   |
| Reophax dentaliniformis               | •                 | 0                  | 0                | 0               | 0<br>           | 0                |                  | 0<br>          | 0                | 0               | 0                  | 0             |   |
| Reophax fusiformis/micacea            | 0                 | 0                  | 0                | 0               | 0<br>0          | 0                | 0                | 0<br>          | 0                | 9<br>9          | 0                  | 1             |   |
| Reophax pilulifera                    | 0                 | 0                  | 0                | 0               | 0<br>0          | 0                | 0                | 0<br>          | 0                | 0               | 0                  | 0             |   |
| Reophax rostrata                      | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0<br>0         | -                | 1               | 0                  | 0             |   |
| Reophax scorpiurus                    | 0 : 0             | 0                  | 0                | 0               | 0               | 0                | 0 : 0            | 0 : 0          | 0 0              | 0 : 0           | 0                  | 0 0           |   |
| Reophax subfusiformis                 | 0 0               | 0                  | 0                | 0               | 0 0             | 0                | 0 0              | 0              | 0 0              | 0 0             | 0                  | 1 4           |   |
| Reophax sp.                           | 0 0               | 0                  | 0 0              | 0               | 0 0             | 0                | 0 0              | 1 0            | 1 0              | 0 0             | 0                  | 0 0           |   |
| Spiroplectammina biformis             | 0                 | 0                  | 5                | 0               | 8               | 0                | 2                | 1              | 0                | 0               | 0                  | 1             |   |
| extularia bigenerinoides              | 0 0               | 0                  | 0 0              | 0 : 0           | 0 0             | 0                | 1 :              | 0 0            | 0 0              | 0 0             | 0                  | 0 0           |   |
| extularia contorta                    | 0 : 0             | 0                  | 0 0              | 0               | 2 0             | 0                | 0.0              | 0 : 0          | 0 0              | 0 . 0           | +                  | 1 0           |   |
| extularia gracillima                  | 0 : 0             | 0                  | 0                | 0 : 0           | 0               | 0                | 0 . 0            | 0 : 0          | 0 0              | 0 0             | 0                  | 0             |   |
| extularia earlandi (tidligere T. teni | 0 0               | 7 I I              | 1 2              | 3               | 5 / 11          | 0                | - 1              | 0 0            | 0 22             | 6 2             | +                  | 1 0           |   |
| extularia kattegatensis               | 0 : 0             | 0                  | 0                | 0               | 0               | 0                | 1 . 0            | 0 : 0          | 9 0              | 0 : 0           | 0                  | 0             |   |
| extularia skagerrakensis              | 0                 | 0                  | 0 0              | 0               | 0               | 0                | 0 : 0            | 0<br>:<br>0    | 0 0              | 0 : 0           | 0                  | 0             |   |
| extularia sp.                         | 0                 | 0                  | 0 0              | 0               | 0 0             | 0                | 0.0              | 0 0            | 0 0              | 0 0             | 0                  | 0             | - |
| extularia torquata                    | 0 0               | 0                  | 1                | 0 0             | 0               | 0                | 0 0              | 0 0            | 1 0              | 0 0             | 0                  | 0 0           |   |
| ritaxis fusca                         | 0                 | 0                  | 0                | 0               | 0               |                  | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| rochammina sn ("skrimna")             |                   |                    |                  |                 |                 |                  |                  |                |                  |                 | 0                  | P 0           |   |
| rochammina sn. (cf "skriimna")        | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| rochammina ap. (u anumpa )            |                   | 0                  | 0                |                 |                 | , -              |                  |                |                  |                 | , -                |               |   |
| rochammina grougermionus              |                   | 0                  |                  |                 | 40              |                  |                  | 4              |                  |                 | , <del>,</del>     |               |   |
|                                       |                   |                    |                  |                 |                 |                  |                  |                | •                |                 | -                  | •             |   |
| rochammina sp.                        |                   |                    |                  |                 |                 |                  | 2                |                |                  |                 |                    |               |   |
| rochamminopsis quadriloba (tidili     |                   |                    |                  |                 | -               |                  |                  |                |                  |                 |                    |               |   |
| rochamminicipers sp.                  |                   |                    |                  |                 |                 |                  |                  |                |                  |                 |                    |               |   |
| ool unidentified                      | 0                 | 0                  |                  | 0               | 0               | 0                | 0                |                | 0                | 0               | 0                  |               |   |
| Ammonia beccari                       | 0                 | -                  | 0                | 1               | 2               | 0                | 9                | 24 9           | 8                | 1 4             | 5                  | 3 21          |   |
| Ammonia sp.                           | 0 0               | 0                  | 0 0              | 0 0             | 0 0             | 0 0              | 0 : 0            | 0 0            | 0 0              | 0 : 0           | 0                  | 0 0           |   |
| Astrononion gallowayi                 | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 1               | m                  | 1             |   |
| Astrononion cf. gallowayi             | 0 : 0             | 0                  | 0 0              | 0               | 0 0             | 0                | 0 . 0            | 0 0            | 0 0              | 0 : 0           | 0                  | 0             |   |
| siloculinella inflata                 | 0                 | 0                  | 0~~              | 0               | 0               | 2                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| solivina pseudoplicata                | 0                 | 0                  | 0                | 0               | 0               | 0                | •                | 0              | 0                | 0               | 0                  | 0             |   |
| solivina albatrossi                   | о<br>о            | 0 0                |                  |                 | 0               |                  |                  |                | •                | 0               | 0                  |               |   |
| solivinellina pseudopunctata          | 2 6               | 4                  |                  | 12 8            | 20 2            | 000              | 7 12             | 10 6           | 0 16             | 10 7            | 13                 | 10 1          |   |
| 3rizalina difformis                   | 0 0               | 0                  | 0 0              | 0               | 0 0             | 0                | 0 0              | 0 0            | 0 0              | 0 0             | 0                  | 0 0           |   |
| srizalina gramen                      | 0 0               | 0                  | 0                | 0 0             | 0 0             | 0 0              | 0 0              | 0 0            | 0 0              | 0 0             | 0                  | 0 0           |   |
| šrizalina pygmea                      | 0 : 0             | 0                  | 0 0              | 0 0             | 0 0             | 0                | 0 : 0            | 0 : 0          | 0 0              | 0 : 0           | 0                  | 0 0           |   |
| Brizalina skagerrakensis              | 0                 | -                  | 0                | 0               | 0               | 0                | 0 : 0            | 0              | 0 0              | 0               | 0                  | 0             |   |
| 3rizalina spathulata                  | 0                 | 0                  | 0                | 0               | 0               | 0                | 0.0              | 0              | 0                | 1 0             | 0                  | 0             |   |
| šrizalina sp.                         | 0                 | 0                  | 0                | 0               | 0<br>0          | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| succella sp. ?                        | 0                 | 2                  | 0                | 0               | -               | •                | •                | 0              | 0                | 0               | 0                  | -             |   |
| sulimina marginata                    | 16 65             | 17 2               | 0 113            | 138 ; 93        | 92 74           | 9<br>            | 5 59             | 68 56          | 22 18            | 78 76           | 55 55              | 81 14         |   |
| suliminella elegantissima             | 0 : 2             | 0                  | 2                | 6 2             | 2 : 1           | 0                | - 2              | 4 : 1          | 0                | 2 : 0           | 0                  | 2 0           |   |
| Cassidulina laevigata                 | 1 2               | 9                  | 9 1              | 1 9             | 35 31           | 15               | 0                | 4 7            | 37 3             | 6 12            | 2 28               | 41 28         |   |
| assidulina obtusa                     | 0                 | 0                  | 0                | 0               | 0               | 0                | <br>0<br>        | 0              | 0                | 0               | 0                  | 0             |   |
| Cassidulina cf. reniforme             | 0 : 0             | 0                  | 0                | 0               | 9               | 16               | 0 : 0            | 0 : 0          | 3                | 0 0             | 0                  | 0             |   |
| Ceratobulimina arctica                | 0 : 0             | 0                  | 0                | 0 : 0           | 0 : 0           | 0 : 0            | 0 0              | 0<br><br>0     | 0 0              | 0 0             | 0                  | 0 0           |   |
| Cibicides bertheloti                  | 0 0               | 2                  | 0                | 0 0             | 2 1             | 0                | 0 : 0            | 1 . 8          | 3                | 0 2             | 7                  | 4 4           |   |
| Cibicides lobatulus                   | 0                 | 0                  | 0                | 0               | 0               | -                | 0                | 0              | 0 0              | 0               | 0                  | 1             |   |
| Cibicides pseudoungelianus            | 0                 | 0                  | 0 0              | 0               | 0 0             | 0                | 0 0              | 0              | 0 0              | 0 0             | 0                  | 0 0           |   |
| bicides refulgens                     | 0 : 0             | 0                  | 0 0              | 0 0             | 0 0             | 0                | 0 : 0            | 0 : 0          | 0 0              | 0 : 0           | 0                  | 0 0           |   |
| Cibicides sp.                         | 0 : 2             | 0                  | 0 0              | 0 1             | 0 0             | 0                | 1                | 0 0            | 0 0              | 0 1             | 0                  | 1 0           |   |
| Cornuspira sp.                        | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 0               | 0                  | 0             |   |
| Cyclogyra involvens                   | 0                 | 0                  | 0                | 0               | 0               | 0                | 0                | 0              | 0                | 1               | 0                  | 0             |   |

| Depth (cm)                            | 12-13cm · 16-17cm | 1 26-28cm 44-46cm | n 1-2cm / 3-4cm  | : 6-7cm / 9-10 | cm /17-18cm; 3 | 2-33cm   1-2cm  | 4-5cm : 7-8cm   | 15-16cm   24-25 | 3m   0-1cm   3-4ci | n 7-8cm 11 | I-12cm 14-15cm   | 22-24cm |
|---------------------------------------|-------------------|-------------------|------------------|----------------|----------------|-----------------|-----------------|-----------------|--------------------|------------|------------------|---------|
| Core & depth (average cm)             | 3m2-12,5 Dm2-16,5 | Dm2-27 Dm2-45     | 5 EA1-1,5 EA1-3, | 5 EA1-6,5 EA1  | 9.5 EA1-17,5 E | A1-32,5 Bo2-1,5 | Bo2-4,5 Bo2-7,5 | Bo2-15,5 Bo2-2  | 1,5 CJ3-0,5 CJ3-3, | 5 C3-7,5 C | 3-11,5 CJ3-14,5  | C 3-23  |
| Dentalina drammenensis                | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Dentalina sp.                         | 0                 | -                 | 0                | 0              | 0              | 0               | 0<br>0          | 0               | 0                  | 0          | 0                | 0       |
| Discorbis sp.                         | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Elphidium albiumbilicatum             | 6 : 16<br>0 : 6   | 5                 | 35 48            | 32             | 12             | 1 29            | 23 32           | 16              | 19 17              | 24         | 16 20<br>F       | с<br>С  |
| Elohidium margaritageum               | 0                 | + 0               | + 0              | , o            |                | 0               | 0               | + 0             | 0                  | o c        | 1                | , u     |
| Elphidium sp.                         | 0 : 0             | 0 0               | 0 0              | 0              | 0              | 0 0             | 0 : 0           | 0 0             | 0 0                | 0          | 0 0              | 0       |
| Elphidium williamsoni                 | 0                 | 0                 | 0                | 0              | 0              | 0 0             | 0<br>0          | 0               | 0                  | 0          | 1                | 0       |
| Epistominella vitrea                  | 4 0               | 4<br>0            | 4<br>0           | 9 0<br>m 0     |                | 6<br>4<br>4     | е<br>0          | m 0<br>m 0      | 0                  | 7 0        | 3                | 5       |
| Fissurina marginata                   |                   |                   |                  | 0              |                |                 | -<br>-          |                 |                    |            | ۍ د<br>م         | 6       |
| Fissurina sp. (2)                     | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          |                  | 1-      |
| Fissurina sp. (3)                     | 0 0               | 0                 | 0 0              | 0              | 0              | 0 0             | 0 0             | 0 0             | 0 0                | 0          | 0                | 0       |
| Gavelinopsis praegeri                 | 0                 | 0                 | 0                | 0<br>0         | 0              | 0               | 0 : 0           | 0               | 0 0                | 0          | 0                | 0       |
| Globobulimina auriculata              | 0                 | 0                 | 0                | 2              | 9              | 0               | 1               | 4               | 0 2                | 0          | 5                |         |
| Globocassidulina sp.                  | 0                 | •                 | 0                | 0              | 0              | 0               | 0 0             | 0               | 0                  | 0 0        | 0                | 0       |
| Guttalina lactea                      |                   | 0 1 0             |                  |                |                |                 |                 | ,<br>,<br>,     |                    |            | o ^              | 0 4     |
| nyaimea baimca                        |                   |                   |                  |                | 70             |                 |                 | + 0             |                    |            | × 0              | 0.4     |
| Layeria discutta                      |                   |                   |                  |                |                |                 |                 |                 |                    |            |                  | - 0     |
| Lagena gracilima                      | 0 0               | 0                 | 0 0              | 0              | 0              | 0 0             | 0 0             | 0 0             | 1 0                | 0          | 0 0              |         |
| Lagena hispidula                      | 0 0               | 0 0               | 0                | 0              | 0              | 0 0             | 0 : 0           | 0               | 0 0                | 0          | 0 0              | -       |
| Lagena mollis                         | 0 : 0             | 0 0               | 0 0              | 0 0            |                | 0 0             | 0 : 0           | 0               | 0 0                | 0          | 0 0              | 0       |
| Lagena laevis                         | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | -       |
| Lagena semilineata                    | 0                 | 0                 | 0                | 0              | 0              | 0               | 0 : 0           | 0               | 0                  | 0          | 0                | 0       |
| Lagena striata                        | 0                 | 0                 | 0                |                | 1              | 0               | 0 0             | 0               | 1 2                | -          | -                |         |
| Lagena substriata                     |                   |                   | 0                |                |                |                 |                 | 0,              | 0                  | o (        |                  |         |
| Layeria sp. (1)                       |                   |                   |                  | - 0            |                |                 |                 | - 0             |                    |            |                  |         |
| Lagona ap. (2)                        |                   |                   |                  |                |                | 4               |                 |                 | 0                  |            | ,<br>,           | 2       |
| Melonis barleeanus                    | 0                 | 0                 | 0                |                | 0              | 0               | , o             | 0               | 0                  | 0          | 0                | 2       |
| Miliolinella subrotunda               | 1 0               | 3 7               | 1 0              | 1              | 9              | 2 2             | 0 0             | 0               | 3 1                | 0          | 0                | 7       |
| Milionella sp.                        | 0                 | 0                 | 0                | 0              | 0              | 0               | 0 : 0           | 0               | 0                  | 0          | 0                | 0       |
| Miliolid                              | 0 : 0             | 0 3               | 0 0              | 0              | 0              | 0 0             | 0 0             | 0 0             | 0 0                | 0          | 0 0              | 1       |
| Nodosaria sp.                         | 0 : 0             | 1 0               | 0 0              | 0              | +              | 4 0             | 0 0             | 0               | 0 0                | 0          | 0 0              | -       |
| Nonion sp.                            | 0 : 0             | 0 0               | 0                | 0              | 0              | 0 0             | 0 : 0           | 0 0             | 0 0                | 0          | 0 0              | 0       |
| Nonionella atlantica                  | 0<br><br>0        | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Nonionella turgida                    | 0 : 0             | 0 0               | 0 0              | 0              | 0              | 0 0             | 0 : 0           | 0               | 0 2                | 0          | 0 0              | 0       |
| Nonionella auricula                   | 2 1               | . 7 33            | 0                | 0              | 2              | 14 0            | 0 : 0           | 0 2             | 0                  | 0          | 2 0              | 0       |
| Nonionella iridea                     |                   | 0                 | 0                | ۰<br>۲         | -              | 25 3            | 9<br>3          | 6 17            | 1                  | -          | 4                | 14      |
| Nonionellina labradorica              | 16 9              | 21 28             | 0                | : 5 10         | 17 :           | -               | 0 : 0           | 10 13           | 6 1                | ы.<br>С    | 19 27            | 20      |
| Oolina hexagona                       | 0 : 0             | 0                 | 0                | 0              | 1              | 0 0             | 0 0             | 0               | 0                  | 0          | 1 0              |         |
| Oolina sp.                            | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Ophtalmidium inconstans               | 0                 | 0                 | 0                | 0              | 0              | 0               | 0 : 0           | 0               | 0                  | 0          | 0                | 0       |
| Ophtalmidium killianensis             | 0                 | 0 0               | 0 0              | 0              | 0              | 0 0             | 0 0             | 0 0             | 0 0                | 0          | 0 0              | 0       |
| Oridosalis umbonatus ?                | 0 : 0             | 0 0               | 0 0              | 0              | 0              | 0 0             | 0 : 0           | 0 0             | 0 0                | 0          | 0 0              | 0       |
| Parafissurina sp.                     | 0 0               | 0 0               | 0                | 0              | 0              | 8               | 0 : 0           | 0 0             | 0 0                | 0          | 1 0              | 0       |
| Parafissurina lateralis               | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Polymorphina sp.                      | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Pullenia bulloides                    | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Pullenia osloensis                    | 。<br>。            | 0                 | 0                |                |                | 5/ 0            |                 |                 | 0                  |            | 0                | 0 4     |
| Pullenia subcarinata                  | 0                 | 0                 | 0                | 0              | 0              | 1               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Pyrgo comata                          | 0 0               | 0                 | 0                | 0              | 0              | 0               | 。<br>。          | 0               | 0                  | 00         | 00               | 0       |
| Pyrgo sp.                             | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 3                  | 0          | 0                | 0       |
| Pyrgo a. subgiobulus                  |                   |                   | 0                |                |                |                 |                 | 0               | 0,0                |            |                  |         |
|                                       |                   | 0                 |                  |                |                |                 |                 |                 |                    |            |                  | 7       |
| Pyrgoella spriaera                    |                   |                   |                  |                |                |                 |                 |                 |                    |            |                  | 7 0     |
| Quinqueloculita agglutiliata          |                   |                   |                  |                |                |                 |                 |                 |                    |            |                  |         |
|                                       |                   | 0 0               |                  |                | ,              |                 |                 |                 |                    |            |                  |         |
| Ounqueloculina stalker                | 0 : 17            | 9                 | 0                | 0              | 0              | 2 0             | 0               | 2               | 0                  | 0          | 0                | 0       |
| Quinqueloculina sp. (1)               | 0 : 0             | 0                 | 0 0              | 0              | 0              | 0               | 0 0             | 0 0             | 1 0                | 0          | 1                | 0       |
| Quinqueloculina sp. (2)               | 0 0               | 0 0               | 0 0              | 0              | 0              | 0 0             | 0 ; 0           | 0 0             | 0 0                | 0          | 0 0              | 0       |
| Rosalina sp.                          | 0 0               | 0 0               | 0 0              | 0              | 0              | 0 0             | 0 0             | 0 0             | 0 0                | 0          | 0 0              | 0       |
| Spirilina sp.                         | 0 : 0             | 0                 | 0 : 0            | 0              |                | 0 0             | 0 : 0           | 0               | 0 0                | 0          | 0 0              | 0       |
| Stainforthia concava                  | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Stainforthia fusiformis               | 224 194           | 160 70            | 159 155          | 89 78          | 55             | 27 196          | 129 122         | 93 94           | 116 112            | 138        | 94 86            | 58      |
|                                       |                   |                   |                  |                |                |                 |                 |                 |                    |            |                  |         |
| Stainforthia skagerakensis            |                   |                   |                  | 0              | 0              | 0               |                 | 0               |                    | 0          |                  |         |
| Stainforthis soli ebelsialia          | •                 |                   |                  |                |                | 2               |                 |                 |                    |            |                  |         |
| Stainforthia sp. (2)                  | 0 : 0             | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0          | 0                | 0       |
| Trifarina angulosa                    | 0 : 0             | 0 0               | 0                | 0              | 0              | 1 0             | 0 0             | 0 0             | 0 0                | 0          | 0 0              | 0       |
| Triloculina oblonga                   | 0 : 0             | 0                 | 0                | 0<br>0         | 0              | 0               | 0 : 0           | 0               | 0                  | 0          | 0 0              | 0       |
| Triloculina sp.                       | 0                 | 0                 | 0                | 0<br>0         | 0              | 0               | 0<br>0          | 0               | 0                  | 0          | 0                | -       |
| Triloculina sp. (B)                   | 0                 | 0                 | 0                | 0              | 0              | 0               | 0               | 0               | 0                  | 0 0        | 0                |         |
| I rioculina tricarinata               |                   | 0                 | 0                | 0 0            | 0,             | 0               |                 | 0               | 0                  | o 0        |                  |         |
| I I I I I I I I I I I I I I I I I I I |                   |                   |                  |                |                |                 |                 |                 |                    |            |                  |         |
| calc troch                            | 0                 | 0                 | 0                |                | 0              | 0               | 0               | 0               | 0                  | 0          | 0                |         |
| calc unidentified (1) (ink Brukket e  | 0                 | 2 0               | 0                | 0              | 0              | ,               | 0               | 1 1             | 0 0                | 0          | 0                |         |
| calc unidentified (2) (ink. Brukket € | 0 0               | 1 0               | 0 0              | 0              | 0              | 0 0             | 0 ; 0           | 1 0             | 0 0                | 0          | 0 0              | 0       |
| calc unidentified (3) (ink. Brukket € | 0 0               | 1 0               | 0 0              | 0              | 0              | 2 3             | 0 0             | 0 0             | 0                  | 0          | 0 0              |         |
|                                       | 442 Van           | 000 040           | 360 370          | 45 940         |                | 244             | 946 Vac         | - 444 - 3E7     | 040 040            | ane        | 1960             | 104     |
| lotat                                 | 17 34             | 36 212            | 302 313          | 74 212         | 4 2/0          | 214 122         | 200 210         | 2/ 1 / 2<br>8/  | 33 28              | 200        | 312 300<br>35 37 | 201     |
|                                       | 1/ 1 40           | 00 ( 00 :         | - 13<br>- 5      | f              | . 00           | 31 1 41         | 21 : 12         | 07 1 20         | 07 1 20            | 17         | 30 I OI          | +0 +    |

Vedlegg 4. (4/4)